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ABSTRACT
BACKGROUND: There is little consensus and controversial evidence on anatomical alterations in the brains of people
with autism spectrum disorder (ASD), due in part to the large heterogeneity present in ASD, which in turn is a major
drawback for developing therapies. One strategy to characterize this heterogeneity in ASD is to cluster large-scale
functional brain connectivity profiles.
METHODS: A subtyping approach based on consensus clustering of functional brain connectivity patterns was
applied to a population of 657 autistic individuals with quality-assured neuroimaging data. We then used high-
resolution gene transcriptomic data to characterize the molecular mechanism behind each subtype by performing
enrichment analysis of the set of genes showing a high spatial similarity with the profiles of functional connectivity
alterations between each subtype and a group of typically developing control participants.
RESULTS: Two major stable subtypes were found: subtype 1 exhibited hypoconnectivity (less average connectivity
than typically developing control participants) and subtype 2, hyperconnectivity. The 2 subtypes did not differ in
structural imaging metrics in any of the analyzed regions (68 cortical and 14 subcortical) or in any of the behavioral
scores (including IQ, Autism Diagnostic Interview, and Autism Diagnostic Observation Schedule). Finally, only sub-
type 2, comprising about 43% of ASD participants, led to significant enrichments after multiple testing corrections.
Notably, the dominant enrichment corresponded to excitation/inhibition imbalance, a leading well-known primary
mechanism in the pathophysiology of ASD.
CONCLUSIONS: Our results support a link between excitation/inhibition imbalance and functional connectivity al-
terations, but only in one ASD subtype, overall characterized by brain hyperconnectivity and major alterations in
somatomotor and default mode networks.

https://doi.org/10.1016/j.biopsych.2023.04.014
Autism encompasses multiple manifestations, from impaired
social communication and language to restricted or repetitive
behavior patterns, interests, and activities (1–3). Due to the
vast heterogeneity in behavior, and as recommended in DSM-
5, this condition is referred to as autism spectrum disorder
(ASD), in which the term “spectrum” emphasizes the variation
in the type and severity of manifestations (4). ASD is thought to
result from complex interactions during development between
genetic, cellular, circuit, epigenetic, and environmental factors
(5–9). Several researchers have suggested that an excitation/
inhibition (E/I) imbalance during development (10,11) may be
an essential mechanism, yet specific factors driving the con-
dition are not well understood. Therapeutic interventions aim-
ing to restore the E/I balance in ASD are a major challenge (12).

Concerning neurobiology, heterogeneity in brain
morphology (13) and brain networks has been found, e.g., in
the frontal, default mode, and salience networks (14–19), as
well as in the social network (20)—encompassing the primary
motor cortex, fusiform gyrus, amygdala, cerebellum, insula,
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somatosensory cortex, and anterior cingulate cortex
(14,21,22). ASD is also heterogeneous in relation to network
characteristics; less segregation and greater efficiency (23,24),
and the opposite as well (25) or a combination of both (26,27),
have been shown. Furthermore, ASD neuroanatomical corre-
lates are not static but undergo changes throughout devel-
opment (28–30), and the same seems to occur behaviorally in
social functioning and communication (31). Altogether, accu-
mulated evidence has shown high heterogeneity within ASD in
the participation of functional brain networks and behavioral
manifestations and in the longitudinal trajectories at the indi-
vidual level.

Moreover, with neuroimaging studies, recent work has
shown additional sources of heterogeneity due to variations in
diagnostic and inclusion criteria and differences in the pro-
cessing neuroimaging pipeline (32,33). ASD is also a poly-
genic, highly heterogeneous condition, with 1010 genes
associated with ASD as of July 8, 2022, according to the Si-
mons Foundation Autism Research Initiative (SFARI) gene
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human database [see also (34)]. Of those, 213 have a relevance
score of 1, meaning that they have maximum published
pathophysiological evidence to ASD. This high genetic
complexity is another manifestation of the heterogeneity of this
condition on several scales. Previous work has assessed the
associations between transcriptomics and brain morphology
(35), showing that genes that are downregulated and enriched
for synaptic transmission in individuals with autism were
associated with variations in cortical thickness.

Novel strategies for ASD subtyping are needed to overcome
such multiscale heterogeneity, which is the most significant
challenge in the development of effective therapies. Some
studies have addressed the heterogeneity in ASD to better
stratify this condition (36–39). Previous work performed clus-
tering, pooling together ASD and typically developing control
(TDC) groups (37), and found 2 groups of individuals showing
hyperconnected or hypoconnected patterns (each group
containing both ASD and TDC participants). Stratification
yields reduced interindividual differences and, therefore, could
complement—and even alleviate—the need for large sample
sizes in autism-based biomarker discovery (40). Here, and
following previous work (36,41,42), we looked at large-scale brain
connectivity patterns common within groups of individuals to
deploy subtyping in ASD. In particular, we applied consensus
clustering strategies to multivariate connectivity patterns of brain
regions (43,44) for associating connectivity-based ASD subtypes
with their neurogenetic profile. Following previous work (45–52),
we hypothesized different biological characterization underlying
the neurodevelopmental and maturation brain connectivity profile
for each subtype, unknown for this condition. For this, we used
the Allen Human Brain Atlas (AHBA) of whole-brain transcriptional
data (53) and performed subtyping on 657 individuals with ASD
from the Autism Brain Imaging Data Exchange (ABIDE) repository
(54), all of them having passed a very strict quality assurance
criterion of elimination of participants by head movement during
image acquisition, thus correcting a well-known spurious excess
of functional connectivity driven by head movements, which is
even more pronounced in the autistic condition. Moreover, to
overcome interscanner variability in the functional connectivity
values across different institutions, we applied rigorous harmo-
nization strategies to transform heterogeneous data into equiv-
alents (55–58).

METHODS AND MATERIALS

Participants

A total of 2156 participants from the ABIDE-I (54) and ABIDE-II
(59) repositories were initially considered in this study, of which
1026 were individuals with ASD and 1130 were TDC partici-
pants. These data were collected across 35 different scanning
cohorts. For each participant, both anatomical and functional
magnetic resonance imaging (MRI) data were used. Acquisition
parameters for each scanning site are found at http://fcon_1
000.projects.nitrc.org/indi/abide/. Additionally, we extracted
several composite scores from the Autism Diagnostic Obser-
vation Schedule-Generic, Autism Diagnostic Interview-
Revised, Vineland Adaptive Behavior Scales, Social Respon-
siveness Scale, Social Communication Questionnaire, and raw
score of the Autism Quotient, and the verbal, performance, and
Full Scale IQ scores to address cognitive performance and
Biological Psych
disorder severity. After data quality assurance (see the
Supplement), the final number of included participants was
1541 (884 TDC and 657 ASD).

Functional Connectivity Matrices

After neuroimaging preprocessing using state-of-the-art
methodology (see the Supplement), FreeSurfer version 5.3.0
was used for brain segmentation and cortical parcellation. A
total of 82 regions were generated from the Desikan-Killiany
atlas, with 68 cortical regions (34 in each hemisphere) and 14
subcortical regions segmented from FreeSurfer (left/right
thalamus, caudate, putamen, pallidum, hippocampus, amyg-
dala, and accumbens). Different brain parcellations were also
considered for the analyses (see the Supplement). For each
participant, the parcellations were projected to the individual
functional data and the mean functional time series of each
region was obtained. Finally, one connectivity matrix for each
participant was built by Fisher’s Z-transformation of the
Pearson correlation coefficients between the region pairs of
the time series.

Data Harmonization

To harmonize our multi-institution functional connectivity data,
and before performing subtyping, we used an in-house
implementation of Combat (https://pypi.org/project/
pycombat), adjusting these multi-institution batch effects by
linear mixed modeling and the use of empirical Bayes methods
(56). We also included in this model the diagnosis label (TDC or
ASD) as a biological variable of interest, ensuring that group-
level connectivity differences were preserved after harmoni-
zation. See the Supplement for details.

ASD Subtyping via Consensus Clustering

Consensus clustering was applied to brain connectivity
matrices (43,44). Because connectivity matrices may contain
effects of no interest (e.g., age), prior to subtyping, we
regressed out age, sex, and motion from each connectivity
entry of the participants with ASD. This regression-out step
was only applied at this subtyping stage. In subsequent ana-
lyses, the harmonized connectivity matrices were used, and
the effect of these variables was controlled for by using them
as covariates. The stability of each subtype and the 95% CIs of
the estimated maximum modularity were assessed by boot-
strapping (60).

Statistical Differences in Brain Morphology and
Behavior Between ASD Subtypes

We applied multiple linear regression to assess statistical dif-
ferences between ASD subtypes in regionwise volume and
thickness from FreeSurfer (https://surfer.nmr.mgh.harvard.
edu), while controlling for age, sex, and total intracranial vol-
ume and a one-way analysis of variance for differences in
behavior. Multiple testing was corrected by controlling the
false discovery rate (FDR).

Association Between Subtypes and
Transcriptomics

We computed the association between functional connectivity
alterations represented by pseudo-R2 maps (larger R2 scores
iatry November 15, 2023; 94:804–813 www.sobp.org/journal 805
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corresponding to greater alterations) (see the Supplement) and
brain transcriptomics maps using spatial autoregressive
models, well known to reduce the correlation bias produced by
the similar transcriptomic expression in proximal brain regions
(49). This analysis was implemented by means of the
maximum-likelihood estimator routine (ML_Lag) from the Py-
thon Spatial Analysis Library (pysal) (61). As a result, for each
gene we obtained one t-statistic and one p value, which
allowed us to assess the association with the pseudo-R2 maps
while accounting for possible spatial autocorrelations. Among
the significantly associated genes, we identified as relevant
those genes included in the SFARI database (https://gene.
sfari.org/) with a gene score equal to 1. Several post hoc an-
alyses tested the robustness of the significant association
between the ASD subtypes and transcriptomics and whether
our enrichment findings were specific to the ASD condition
(see the Supplement).

Gene Set Enrichment Analysis and Protein
Interaction Analysis

We only considered for the analyses such genes with FDR-
corrected p (pFDR) value , .05 in each subtype. After that, we
performed a gene set enrichment analysis using WebGestalt
(62) (http://www.webgestalt.org/), introducing as the input the
list of the corrected genes and the t-statistic from the associ-
ation analysis. We computed the gene set enrichment analysis
for gene ontology (GO) biological process (63) and Reactome
pathways (64) and only considered enriched categories pFDR
value , .05. We further applied an ensemble-based enrichment
analysis, similar to the one developed in (65), to evaluate
whether significant enrichment annotations were affected by
inflation or false positive bias (65). First, we generated 10,000
surrogate brain maps with the same spatial autocorrelation as
the original pseudo-R2 maps using BrainSMASH tool (66). For
each of the surrogate maps, we computed the association with
brain transcriptome maps using spatial autoregressive models
and used those genes with a pFDR value , .05 for computing
enrichment analysis. For each of the annotations of interest, we
generated a distribution of the likelihood of that annotation
being significant by these random maps. These distributions
were used to compute a p value to evaluate false positive bias.
For the protein interaction analysis, we used the tool STRING
version 11.5 (67) to generate a physical protein-protein inter-
action network for each subtype, with experiments and data-
bases as interaction sources. These networks were then
analyzed using Cytoscape version 3.9.0.

RESULTS

We obtained harmonized functional connectivity matrices from
657 ASD and 884 TDC participants following the method
represented in Figure S1. For subtyping, we first removed any
effect from age, sex, and head motion in the brain connectivity
matrices of the ASD group and then applied a consensus
clustering. We thus found 2 main subtypes1: the first with 348
1For subtyping, we used connectivity matrices only from partici-
pants with ASD, although the association with brain tran-
scriptomics was performed for functional connectivity
alterations encoded in the pseudo-R2 maps.
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participants (52.97% of all participants with ASD) and the
second with 284 participants (43.23%). In addition to these 2
subtypes, which were at the highest order in a hierarchy that
broke down into smaller subtypes (Figure S2), we also found
2 more residual subtypes of only 23 participants (3.5%) and 2
participants (0.3%), respectively. Our clustering solution,
which exhibited modularity statistically different from
0 (0.181, 95% CI, 0.169–0.194), provided for the 2 major
subtypes a stability score of 0.953 and 0.819, respectively,
suggesting high consistency and recovery after resampling
(mean stability . 0.75) [see (60)]. In contrast, the residual
subtypes were mostly not replicable during bootstrapping
(mean stability , 0.5); as a result, they were ignored for
further analysis. Furthermore, the robustness of the subtyping
solution was assessed by 2 different strategies, namely
multiresolution hierarchical clustering and cross-validation
(see the Supplement). As expected, given that their effects
were removed prior to subtyping, none of the resulting sub-
types were differentiated by age (absolute Cohen’s |d| = 0.04,
t test, p = .58), sex (Cramer’s V = 0.02, c2 test, p = .55), or
head motion (absolute Cohen’s |d| = 0.04, t test, p = .64).

With respect to cognitive and behavioral performance, the 2
subtypes were highly similar to each other, because among 10
different scores compared, only 2 of them gave uncorrected
statistical differences (Autism Diagnostic Observation
Schedule total p = .03, Social Responsiveness Scale total p =
.05), which became nonsignificant after correcting for multiple
comparisons (Autism Diagnostic Observation Schedule total
pFDR = .27, Social Responsiveness Scale total pFDR = .27). For
further details on the subtype comparisons, see Table 1.
Furthermore, no significant structural differences between
subtypes 1 and 2 were found in region volume or thickness.
Therefore, all the following analyses are based on differences
in functional connectivity that each ASD subtype has in relation
to TDC.

To assess the differences between groups in the overall
connectivity per participant, defined here as the average
positive correlation of the harmonized connectivity matrix
(negative correlations were excluded due to the lack of
consensus about their origin), we ran multiple linear regression
while controlling for age, sex, and full IQ (Figure 1). Subtype 1
showed significant hypoconnectivity to TDC (b = 20.08,
t1227 = 214.86, p , .01). The opposite was true for subtype 2
(b = 0.04, t1163 = 6.91, p , .01), thus corresponding to
hyperconnectivity. Moreover, the difference in (absolute) b
coefficients provided for subtype 1 higher values than for
subtype 2, indicating a larger separability in connectivity to
TDC. Other metrics for defining overall connectivity per
participant led to similar conclusions (see the Supplement).

Next, we assessed the differences in connectivity patterns
between each ASD subtype and the TDC group, measured by
regionwise normalized pseudo-R2 brain maps, resulting from
multivariate distance matrix regression (Figure 2; Supplement).
The spatial similarity between these maps was very low (r80 =
0.09, permutation-based p = .67, after using 5000 surrogates
that preserved spatial autocorrelation), indicating that each
subtype exhibited a distinct neurobiological profile of brain-
wide connectivity, as expected since the subtypes were ob-
tained by clustering the functional connectivity profiles.
Specifically, for subtype 1, higher differences as compared
org/journal
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Table 1. Behavioral Characterization of ASD Subtypes

Measurement (nsubtype 1/nsubtype 2) Subtype 1, Mean (95% CI) Subtype 2, Mean (95% CI) p Value FDR-Corrected p Value

Full Scale IQ (321/266) 105.23 (103.54–106.99) 106.81 (104.96–108.61) .25 .49

Verbal IQ (273/241) 104.43 (102.28–106.51) 106.78 (104.44–108.98) .13 .45

Performance IQ (277/245) 105.0 (103.18–106.96) 105.4 (103.27–107.56) .80 .97

ADI Total (228/190) 35.21 (34.07–36.33) 34.07 (32.59–35.51) .21 .49

ADOS Total (221/179) 11.86 (11.37–12.36) 11.01 (10.46–11.58) .03 .27

Vineland Sum Scores (53/49) 248.98 (237.57–260.68) 254.84 (240.00–268.96) .54 .77

Vineland ABC Standard (53/49) 79.43 (76.3–82.7) 79.16 (75.53–82.61) .91 .97

SRS Raw Total (213/166) 94.45 (90.46–98.35) 88.49 (83.64–93.14) .05 .27

SCQ Total (87/71) 18.78 (17.22–20.38) 17.68 (16.14–19.23) .32 .54

AQ Total (22/21) 32.05 (29.27–34.55) 32.14 (27.81–36.19) .97 .97

p Values are from a one-way analysis of variance test to assess any statistical difference. For ABIDE data, we calculated the ADI total as the sum of the Abnormalities in
Reciprocal Social Interaction and the Abnormalities in Communication (Verbal Subjects Only) scores, and the ADOS total as the sum of the Communication and the Social
Interaction scores.

ABIDE, Autism Brain Imaging Data Exchange; ABC, Adaptive Behavior Composite; ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation
Schedule; AQ, Autism Spectrum Quotient; ASD, autism spectrum disorder; FDR, false discovery rate; SCQ, Social Communication Questionnaire; SRS, Social
Responsiveness Scale.
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with TDC were found in the superior temporal gyrus, posterior
cingulate cortex, and the insula, covering the functional net-
works of default mode and salience. For subtype 2, higher
differences existed in the thalamus, similar to previous work
(68), putamen, and precentral gyrus. Thus, alterations affecting
the default mode network were common to both subtypes, but
one (subtype 1) also showed specific disruptions involving the
Figure 1. Two major stable ASD subtypes, one with hypoconnectivity and
the other with hyperconnectivity. Histogram and box plots of the individual
average connectivity values (measured as Fisher’s Z) for the TDC group
(blue), the population of all participants with ASD without subtyping (brown),
and the 2 ASD subtypes (pink and orange). Two other subtypes that were
not stable after permutation testing are not depicted here and have been
ignored for further analysis. The median value of the TDC group is marked as
the connectivity baseline by a dashed vertical line. Values above the
baseline correspond to overall hyperconnectivity and those below the
baseline to overall hypoconnectivity. Subtype 1 is dominated by hypo-
connectivity and subtype 2 by hyperconnectivity. Additionally, for subtypes
1 and 2, we introduce 2 colors for participants to show within-group con-
nectivity differences: blue for hypoconnectivity, and red for hyper-
connectivity. ASD, autism spectrum disorder; TDC, typically developing
control.

Biological Psych
salience network and the other (subtype 2) in the somatomotor
network.

For the biological characterization of each subtype, we set
out to identify which genes had an expression across brain
regions significantly associated (pFDR , .05) with the differ-
ences in connectivity measured by the normalized R2 brain
maps (Figure 2, histograms), whereby larger R2 values corre-
spond to larger functional connectivity alterations. For subtype
1, a total of 195 negative-associated (NEG) genes and 364
positive-associated (POS) genes existed. Significant NEG
genes, also present in the SFARI gene human database with a
relevance score of 1, were GFAP, CHD7, SKI, SHANK3, ANK3,
and CACNA1E, while POS genes were ASXL3, MAP1A,
STXBP1, DPYSL2, KNCB1, SCN8A, RIMS1, and CDKL5.
Similarly, for subtype 2, we found 142 NEG genes, of which
GRIA2, RFX3, SHANK2, GRIN2B, DLG4, LRRC4C, ARX, and
GABRB3 were also present in the SFARI list, and 180 POS
genes, including MAGEL2 and IQSEC2. We next applied gene
enrichment to the list of significant genes within each subtype,
finding no significant enrichment for subtype 1, the type with
brain hypoconnectivity. However, for subtype 2, the enrich-
ment of the NEG genes included GO biological processes and
Reactome pathways related to glutamate signaling (affecting
both AMPA and NMDA receptors) and synapse organization in
relation to the E/I imbalance occurring during the development
of brain circuits (Figure 3A). We also assessed which NEG
genes participated in each biological process and pathway
(Figure 3B), finding that genes DLG4, GRIN2B, GRIA2, and
SHANK2 were participating in most of them; and, the gene DLG4
plays a role in all of them. Additionally, the DLG4 gene was the
one with the highest degree in the protein interaction network.

We found a significant enrichment with biological processes
related to E/I imbalance for subtype 2 but not for subtype 1. To
test whether these findings suggested that the functional
connectivity in subtype 1 was different from that in previous
studies of ASD, we calculated the similarity of the connectivity
profiles of our 2 subtypes with typical connectivity alterations
in ASD, represented by brain maps in (69) and calculated from
4 different ASD databases of resting functional MRI data. We
iatry November 15, 2023; 94:804–813 www.sobp.org/journal 807
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Figure 2. Association between transcriptomics and connectivity patterns for each autism spectrum disorder subtype. For subtypes 1 and 2, we calculated
the pseudo-R2 map, considering the differences in the connectivity pattern that each subtype has from typically developing control participants. (Right) Brain
maps of normalized pseudo-R2. (Left) Histograms of association values between pseudo-R2 and gene transcription activity (different values correspond to
association with different genes). This procedure was repeated using the pseudo-R2 map for each subtype. The tail of the negative genes (false discovery rate–
corrected p , .05 and t-statistic , 0) is marked with a blue rectangle and the tail of the positive genes (false discovery rate–corrected p , .05 and t-statistic .

0) with a red one for both subtypes. Significance limits (t) are also shown. For each distribution tail, we also show the relevant genes present in the SFARI
autism spectrum disorder genes with a score = 1.

2We focused on the left hemisphere, as all donors provided sam-
pling sites of genes in this hemisphere, and only 2 of the 6
donors from the AHBA dataset were sampled in both left and
right hemispheres.
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calculated for each subtype the average spatial similarity
across the 4 existing brain maps of connectivity alterations in
(69). For subtype 1 the average similarity was not significant
(r80 = 0.19, p = .45), but for subtype 2 it was significant (r80 =
0.46, p = .02), indicating that subtype 2 more closely resem-
bled the typical connectivity alterations reported in ASD, which
in fact is the subtype for which we found significant enrichment
toward E/I imbalance.

We also compared the transcriptomic-connectivity results
from the generalized Louvain algorithm to those found by
multiresolution clustering (see the Supplement). As a measure
of similarity between the 2 solutions, Dice index values of the
solutions were 0.99 and 0.89, respectively, which indicated a
high level of reproducibility of the gene expression association
with brain alterations between the 2 clustering strategies.

Additionally, we studied the effects of considering a
different brain partition on the results of the transcription-
connectivity association (see the Supplement). Using the
functionally defined Schaefer brain partition with 100 different
regions, the association results obtained from the Desikan-
Killiany atlas as compared to those from the Schaefer parti-
tion had very low similarity for subtype 1 (r1880 = 20.11,
p , .001), and slightly higher results were found for subtype 2
(r1880 = 0.40, p, .001). By adding the same subcortical regions
to the Schaefer partition (see the Supplement), the gene as-
sociation became very similar for the 2 brain partitions and for
808 Biological Psychiatry November 15, 2023; 94:804–813 www.sobp.
the 2 subtypes (subtype 1, r1880 = 0.87, p , .001; subtype 2,
r1880 = 0.92, p , .001), suggesting a strong contribution of the
subcortical alterations to the robustness of our association
results. A description of the relevant genes related to subtype 2
is shown in Table S2. These results were obtained by using
left-hemisphere transcription sites2, but the results were also
preserved when we repeated the analysis for the 2 brain
hemispheres (Figure S3).

Finally, it is important to note that no significant enrichment
was found for subtypes lower in the dendrogram level corre-
sponding to the 2 subtypes described above (Figure S2). The
significant enrichment did not exist after repeating the same
analysis using the entire ASD group, indicating the need for
subtyping first in the entire population to reveal our findings. To
prove that our gene enrichment findings were specific to the
ASD condition (see the Supplement), we repeated the same
procedure using only the TDC population in 2 matched sub-
groups of TDC participants, one used for subtyping and the
other for estimating the pseudo-R2 maps. As a result, no gene
survived FDR correction in any subtype, thus indicating that
the E/I imbalance found in the hyperconnected autistic
org/journal
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Figure 3. Excitation/inhibition imbalance enrichment for only one class of participants with autism spectrum disorder (subtype 2). (A) GSEA characterization
of the false discovery rate–significant genes in subtype 2, including the GO biological processes (dark gray) and Reactome pathways (light gray) enrichments.
We further tested whether the enrichment findings were affected by their reporting rate in the literature, and for all cases reported here, we obtained false
discovery rate–corrected p , .05. (B) Participation count for each gene in the processes shown in (A) ranging from 4 to 10 (corresponding to a participation in
all processes that only occurred for DLG4). (C) Protein-protein interaction physical network from the list of false discovery rate–significant genes. For ease of
visualization, only subnetworks with a minimum of 10 genes are depicted. (D) Node degree of the genes participating in the network shown in (C). DLG4 is the
gene with the highest degree. (B–D) Bars corresponding to genes with SFARI score = 1 are colored in red; SFARI score = 1S in dark red; SFARI score = 2 in
orange; and SFARI score = 2S in dark orange, and the same color code was used in (C) and (D) for network nodes. GO, gene ontology; GSEA, gene set
enrichment analysis.
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subtype is specific to the autistic condition. Likewise, although
the subtyping performed in both ASD and TDC groups resulted
in solutions with similar overall connectivity separation,
resulting in 2 sets of hypo- and hyperconnected brains, a
multivariate distance matrix regression analysis applied to the
functional correlation patterns showed that the hyper-
connected subtype found in ASD was statistically different
from that in TDC (p , .001). The hypoconnected subtypes in
ASD and TDC were also different from each other (p , .001).
This might explain why no similar findings in the enrichment
were found for the hyperconnected TDC subgroup. In sum-
mation, the significant association between E/I imbalance and
altered functional connectivity was observed when subtyping
in ASD, and only in the ASD group characterized by overall
hyperconnectivity, demonstrating the specificity of the re-
ported enrichment.
DISCUSSION

Two significant subtypes result from functional connectivity–
based subtyping in a cohort of 657 individuals with ASD. The
two are indistinguishable by behavioral scores, and also by
morphometric comparisons based on structural neuroimaging,
Biological Psych
in agreement with recent results (40). Compared with the TDC
group, the first subtype is characterized by hypoconnectivity,
with major implications in the superior temporal gyrus, poste-
rior cingulate cortex, and insula, showing connectivity alter-
ations in the default mode and salience networks with no
significant gene enrichment after correcting for multiple com-
parisons. The second subtype, representing 43% of partici-
pants with autism, is characterized by hyperconnectivity, with
major implications in the thalamus, putamen, and precentral
gyrus and showing network alterations in somatomotor and
default mode networks. In a recent analysis linking genomics
and resting functional connectivity in 32,726 individuals with
psychiatric conditions, significant ASD contributions were
shown in the thalamic and somatomotor networks (68),
consistent with our results for subtype 2. Only subtype 2 had a
significant gene enrichment toward glutamate signaling
(affecting both AMPA and NMDA receptors), consistent with
the E/I imbalance that occurs during brain development and
one of the most accepted hypotheses in the pathophysiology
of autism (70). Indeed, it is thought that in the development of
ASD, there is an increase in the ratio between excitation and
inhibition, leading to hyperexcitability of cortical circuits (10). It
is also possible that differential E/I alteration of selective brain
iatry November 15, 2023; 94:804–813 www.sobp.org/journal 809
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circuits might result in an unaltered E/I ratio at the network level
(11). Our work maps patterns of functional connectivity alter-
ations with genes that are involved in E/I balance. While it is
true that perturbation in these genes in animal models strongly
affects E/I imbalance in brain networks (71), the participant
data that we analyzed in this study do not directly address the
E/I imbalance, and this is a limitation of our methodology. It is
also important to emphasize that the E/I enrichment found in
our study is specific to the ASD condition and, as such, does
not occur in the TDC group. Moreover, the connectivity profile
in the entire autistic population, i.e., if no subtyping is per-
formed, does not have significant enrichment, indicating the
need for subtyping first to find the connection with E/I imbal-
ance in one subtype of individuals with ASD.

Our subtyping approach was based on patterns of func-
tional connectivity alterations. There are 3 major reasons
supporting our choice not to use structural features for our
subtyping analysis. First, it would require a different clustering
approach to the one adopted here, which is based on the
consensus of connectivity patterns. Second, and based on
recent data-driven results from an international autism imaging
biomarker challenge (40) with more than 146 institutions sub-
mitting prediction algorithms, the 10 best-performing algo-
rithms (with ASD prediction accuracies having area under the
curve . 0.80) showed a dominant contribution of the func-
tional modality, with a much higher discriminative power than
the structural MRI data. Third, our main goal was to study the
origin of functional connectivity–based heterogeneity in
autism, and structural features (representing different brain
aspects) give rise to a different kind of heterogeneity. As a
result, the proper combination of these 2 diverse sources of
heterogeneity would require a multimodal approach different
from the one developed here.

Our approach is unique in several ways. First, our study is
based on a large cohort of individuals with ASD (N = 657)
from the ABIDE initiative, all of them having passed the
rigorous criteria of motion removal, and it combines
anatomical and functional neuroimaging data from 24
different institutions. Second, we used Combat, a rigorous
data harmonization method to eliminate the variability be-
tween MRI scans across the 24 institutions, one of the
largest sources of variability when combining imaging data
from multiple institutions (72). Third, our analysis of brain
connectivity was carried out on a large scale, in which each
brain region is represented by its connectivity pattern across
the entire brain. Therefore, we did not consider a priori any
brain region as more dominant or relevant than the others.
Fourth, we made use of a consensus clustering approach
that we developed (43,44), and that has been successfully
tested by others (73), to group participants in the same
subtype if the connectivity profiles are similar across all the
analyzed regions. Finally, we made use of the AHBA to
describe the neurogenetic profiles of each subtype, which
has been used before for morphometric information in ASD
(35) but never for characterizing subtypes based on func-
tional connectivity patterns of this condition.

Due to the heterogeneity and diversity reported in ASD
genetics, the use of AHBA may shed new light, because it
provides information on the transcriptome across the brain in
unprecedented detail, accounting for 3702 sampling sites with
810 Biological Psychiatry November 15, 2023; 94:804–813 www.sobp.
transcription information on 20,500 genes as a specific
signature for each anatomical region. Moreover, the use of
AHBA is complementary to other techniques, such as
genome-wide association studies (74), that simultaneously
address genotype-phenotype associations from hundreds of
thousands to millions of genetic variants in a data-driven
manner. Indeed, genome-wide association studies have pre-
viously been used for ASD subtyping (75,76) using behavioral
scores as traits and, therefore, the subtypes obtained were
more closely related to symptom severity and not to functional
connectivity.

Our enrichment results for subtype 2 show that DLG4, also
known as PSD95, is a gene with major implications in the
protein interaction network of subtype 2. DLG4 mediates
NMDA and AMPA receptor clustering and function; it affects
glutamatergic transmission and has been shown to have an
aberrant function in ASD (77–81). DLG4 also influences the size
and density of dendritic spines during brain development,
having strong effects on synaptic connectivity and activity,
e.g., reduced DLG4 activity leads to increased dendritic spine
numbers (82).

Some limitations should be noted. First, our transcriptomic
analysis was based on AHBA, which is derived from healthy,
and not from ASD, brain tissues. Therefore, the relations
studied here between ASD-dependent connectivity patterns
and healthy transcriptomics highlight large-scale organization
aspects of the connectivity alterations to gene expression.
Future studies should confirm our findings using gene
expression data from a pathological cohort, which is not
currently available. Second, the number of donors from the
AHBA data is very limited (n = 6) and the sampling sites
available do not cover the full brain. Third, our subtyping
method found 2 subtypes of ASD participants who were
hypoconnected and hyperconnected at the network level. The
same classes of subtypes were found by subtyping the TDC
group. However, when comparing first the hypoconnectivity
subtypes between the ASD and TDC groups and then the
hyperconnectivity subtypes, connectivity patterns were signifi-
cantly different in both cases, which justifies the significant
enrichment found for the hyperconnectivity ASD subtype, but
not for TDC. Finally, our main neurogenetic finding in one ASD
subtype, involving genes largely affecting the E/I imbalance, is
based only on the statistical association between transcriptome
activity and patterns of functional connectivity alterations. Future
studies should explicitly test the causal link between E/I imbal-
ance and functional connectivity alterations in ASD.

In summary, our novel approach, which includes data
harmonization, multivariate distancing in large-scale functional
connectivity patterns, and transcriptome brain maps, reveals
strong enrichment for glutamate signaling (affecting both
AMPA and NMDA receptors) and synapse organization in one
subgroup of participants with ASD, reinforcing the hypothesis
of an E/I imbalance occurring during brain development of
individuals with ASD.
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