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Abstract 21 

Older age is associated with alterations in executive functioning (EF). Age-related alterations in 22 

the integrity of structural brain networks may contribute to EF decline, with potential 23 

consequences for independent living. Graph theory provides powerful metrics to examine the 24 

brain’s structural connectome, but few studies have investigated the relationship of EF and 25 

structural brain networks, as described by graph-theoretical measures, in older adults. We aimed 26 

to investigate the mediatory role of network characteristics for the relationship between age and 27 

EF in older adults. Eighty-four older adults completed a battery of EF tasks to allow for the 28 

extraction of a latent Common-EF factor. White-matter tractograms were generated from 29 

diffusion neuroimaging using anatomically-constrained tractography (ACT) and spherical-30 

deconvolution informed filtering of tractograms (SIFT2). From the resulting networks, global 31 

efficiency (reflecting integration) as well as local efficiency (reflecting segregation) were 32 

calculated. Older age was associated with worse EF and decreased global and local efficiency. 33 

Both global and local efficiency were positively correlated with EF. Local efficiency mediated 34 

the negative correlation of age and EF, whereas no such relationship was found for global 35 

efficiency. Further regional efficiency analyses identified the nodes that contributed to the 36 

mediation effect of local efficiency. These results shed light on the shared variability among the 37 

integrity of structural brain networks and EF at older age. A causal role of a reduced segregation 38 

in structural brain networks to support EF in older adults remains to be determined but would 39 

bear promising potential for preserving EF during aging. 40 

 41 

  42 
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1 Introduction 43 

Executive functions (EFs) are higher-level mental processes that are believed to control 44 

lower-level operations, allowing for successful goal-directed behavior (Diamond, 2013; Friedman 45 

& Miyake, 2017). Age-related declines in EF (Ferguson et al., 2021; Fisk & Sharp, 2004; 46 

Rhodes, 2004) may have adverse consequences for wellbeing and functional independence. 47 

Several factors may contribute to age-related EF decline, including alterations in the brain white 48 

matter (Madden et al., 2009, 2012; Westlye et al., 2010). Specifically, interindividual differences 49 

in EF have been linked to decreases in white matter connectivity as seen in healthy aging (Coxon 50 

et al., 2012; Fjell et al., 2017; Gustavson et al., 2023; Hoagey et al., 2021; Li et al., 2020; 51 

Serbruyns et al., 2016; Tang et al., 2023; Ystad et al., 2011). White matter tracts across the brain 52 

have been linked to EF performance (Ribeiro et al., 2023). Accordingly, white matter 53 

microstructural alterations in regions supporting EF (i.e., a structural EF network) have been 54 

proposed as a mechanism underlying EF decline in aging (Bennett & Madden, 2014; Coxon et 55 

al., 2016; Fjell et al., 2017; Hoagey et al., 2021; Shen et al., 2020; Webb et al., 2020; Zahr et al., 56 

2009).  57 

Structural brain connectivity can be investigated using graph theoretical analysis  58 

(Bullmore & Sporns, 2009). Graph theoretical analysis describes brain networks as nodes and 59 

edges (i.e., pathways between nodes), and derives specific metrics that reflect different facets of 60 

the brain’s network topology (Rubinov & Sporns, 2010; Sporns, 2013; Yeh et al., 2021). Within 61 

graph theoretical analysis, “efficiency parameters” describe the efficiency of information 62 

exchange within and between networks (Latora & Marchiori, 2001). Global efficiency (Eglob) 63 

indicates the efficiency of parallel information transfer between all pairs of nodes in a network, 64 

and thus its integration (Cohen & D’Esposito, 2016). Regional efficiency (Ereg) indicates, for 65 

every node in a network, how efficiently information can be transferred among its neighboring 66 
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nodes when that node is removed. It thus reflects how much information transfer in a small area 67 

surrounding the node (i.e., a local subnetwork) is dependent on it (i.e., the efficiency of 68 

information transfer within this sub-network). Finally, local efficiency (Eloc) denotes the average 69 

of Ereg across all nodes (Latora & Marchiori, 2001). Hence, Eglob is a measure of network 70 

integration, whereas Ereg and Eloc are measures of network segregation. 71 

Graph theoretical analysis  has revealed age-associated alterations in structural brain 72 

networks (Damoiseaux, 2017). Specifically, cross-sectional evidence links age to decreased 73 

global efficiency (Bi et al., 2021; Hinault et al., 2021; Li et al., 2020; Wen et al., 2011; Zhao et 74 

al., 2015; but see Gong, Rosa-Neto, et al., 2009) as well as regional and local efficiency (Bi et al., 75 

2021; Gong, Rosa-Neto, et al., 2009; Li et al., 2020; Wen et al., 2011; Zhao et al., 2015). Overall, 76 

the literature suggests that structural brain networks deteriorate with increasing age, rendering 77 

them less efficient. This is consistent with an age-related “disconnection” of structural brain 78 

networks that may underlie age-associated cognitive decline (Bennett & Madden, 2014; Fjell et 79 

al., 2017; Madden et al., 2012; O’Sullivan et al., 2001).  80 

Cognitive performance has been shown to correlate with the integrity of structural brain 81 

networks in older adults. For instance, Wen and colleagues (2011) found global network 82 

efficiency to be associated with processing speed, visuospatial abilities, and EF in older adults. In 83 

addition, Li and colleagues (2020) reported correlations with global and local network efficiency 84 

for both attention and EF in a similar population. 85 

Taken together, the literature suggests age-related alterations in white matter networks, 86 

with potential consequences for EF. The present study was designed to investigate age-associated 87 

differences in global, local and regional structural networks efficiency and their contribution to 88 

age-associated performance differences in EF in healthy older adults, as indexed by a latent 89 

Common EF measure. The advantage of a latent EF metric is that it integrates several domains of 90 
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EF and is not limited to one particular aspect of EF. In addition, it is more reliable and 91 

generalizable as compared to measures based on averaged z-scores obtained from single tasks per 92 

domain, as it reduces variability that is not specific to EF (Miyake et al., 2000; Miyake & 93 

Friedman, 2012). We hypothesized that (1) graph theoretical measures reflecting global and local 94 

efficiency of structural networks (see Methods) would be negatively related to age and positively 95 

to EF in older adults, and (2) the efficiency of information processing in the structural 96 

connectome (indexed by these graph theoretical measures) would account for age-associated 97 

differences in EF in older adults, as studied via mediation analyses. In addition, we aimed to 98 

identify the specific nodes from which connectivity show the strongest mediating association 99 

with the relationship among age, structural network efficiency and executive functioning. 100 

2 Materials and Methods 101 

2.1 Participants and Procedure 102 

As part of a larger multimodal project investigating neural correlates of executive 103 

function (Seer et al., 2021, 2022), 111 older adults (aged 60 years and above) were recruited from 104 

the Leuven area (Belgium). All participants had normal or corrected-to-normal vision and 105 

reported no current intake of psychoactive medication, a current diagnosis of 106 

psychiatric/neurological disorder, and/or MRI contraindications. The present analyses included 107 

84 participants (52 female, 32 male; 70 right-handed, 4 left-handed, 10 ambidextrous), between 108 

60 and 85 years of age (M = 68.06, SD = 4.74), who had both high quality dMRI and EF data. 109 

Eligibility based on the performance on EF tasks has been described in detail elsewhere (Seer et 110 

al., 2021). In brief, participants showing signs of insufficient adherence to the task instructions 111 

(i.e., performance levels that did not differ from chance level on at least one EF task, n = 12 112 

participants) were excluded. None of the participants in the final sample (n = 84; Figure 1) 113 
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showed signs of mild cognitive impairment, as based on the Montreal Cognitive Assessment 114 

(MoCA; M = 27.71, SD = 1.82, range: 24-30 (cutoff = 23/30, Carson et al., 2018); Nasreddine et 115 

al., 2005). Subjective cognitive complaints were not assessed. The average number of education 116 

years was 18.06 (SD = 2.66; range: 11-24) and the average level of crystallized intelligence on 117 

the Peabody Picture Vocabulary Test (PPVT) was 109.50 (SD = 8.76, range: 82-125; Horn & 118 

Cattell, 1967; Schlichting, 2005). The study was reviewed and approved by the Ethics Committee 119 

Research UZ/KU Leuven (study number 61577). All participants provided written informed 120 

consent to participate and were offered a compensation of € 100. The dataset is openly available 121 

on https://osf.io/hxr38/files/osfstorage. 122 

The study protocol is described in detail elsewhere (Seer et al., 2021). Participants 123 

completed three sessions: (1) a first behavioral session, where they completed background 124 

assessments and questionnaires as well as three computerized EF tasks, (2) a second behavioral 125 

session, where the remaining six computerized EF tasks were completed, and (3) a neuroimaging 126 

session. Participants completed the whole experiment on average within approximately two 127 

weeks. 128 

2.2.Executive Functioning Tasks 129 

Participants completed a comprehensive computerized battery in OpenSesame version 130 

3.2.6 (Mathôt, Schreij, & Theeuwes, 2012) of nine neuropsychological tasks across two test days, 131 

following a protocol similar to Friedman and colleagues (2016). This test battery was designed to 132 

cover three key domains of EF, i.e., inhibition (suppressing unwanted actions), shifting 133 

(switching between mental operations), and updating (managing working memory content). 134 

Every domain was tapped by three tasks. The inhibition domain was tapped by antisaccade, 135 

number-Stroop, and stop-signal tasks. In the antisaccade task, participants are presented with 136 

https://osf.io/hxr38/files/osfstorage
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salient visual cues and need to avoid automatic saccades towards that stimulus. In the number-137 

Stroop task, participants need to avoid reading out a number from a string of numbers and instead 138 

report how many numbers the string contained. In the stop-signal task, participants should 139 

withhold a prepotent motor response to a simple categorization task when cued to do so. The 140 

shifting domain was tapped by category switch, color-shape, and number-letter tasks. In all of 141 

these, participants are asked to switch back and forth between two tasks according to a visual task 142 

cue. In the category switch task, participants are cued to categorize words as either denoting an 143 

animate vs an inanimate object (animacy task) or as describing an object that is larger vs smaller 144 

than a football (size task). In the color-shape task, participants are asked to categorize stimuli 145 

either according to their shape (triangle vs circle; shape task) or according to their color (red vs 146 

green; color task). In the number-letter task, participants are presented with pairs of letters and 147 

numbers and are cued to categorize these pairs either regarding the letter being a vowel vs a 148 

consonant (letter task) or regarding the number being odd vs even (number task). The updating 149 

domain was tapped by digit span, keep track, and spatial 2-back tasks. In the digit-span task, 150 

participants are asked to repeat strings of numbers either in forward or in backward order, with 151 

the length of the strings increasing until the participant fails to respond correctly. In the keep 152 

track task, participants are asked to attend to a stream of words from different categories (e.g., 153 

countries, colors) and recall the last word of each category, with varying numbers of categories to 154 

keep track of. In the spatial 2-back task, participants are asked to watch a sequence of dots 155 

flashing on different locations scattered across the computer screen and to indicate, for every dot, 156 

whether the dot in that same location has been highlighted two trials before the current one. The 157 

task order was fixed to minimize between-subject variability (e.g., due to learning or fatigue 158 

effects) and hence facilitate latent variable extraction (day 1: stop-signal, category switch, digit 159 

span; day 2: color-shape, keep track, anti-saccade, spatial 2-back, number-Stroop, number-letter; 160 
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Friedman et al., 2016). The rationale for this particular task order, individual task parameters, and 161 

calculation of performance scores were described in detail elsewhere (Seer et al., 2021). 162 

A single measure of EF was derived from the common and specific EF variance, using the 163 

unity/diversity framework (Friedman & Miyake, 2017; Miyake et al., 2000; Miyake & Friedman, 164 

2012). The nine performance scores for the tasks described above were entered into a 165 

confirmatory factor analysis in lavaan 0.6-7 (Rosseel, 2012), where a “Common EF” factor 166 

represented the shared variance by all tasks while “shifting-specific” and “updating-specific” 167 

factors represented the residual variability from shifting and updating tasks (Miyake & Friedman, 168 

2012; Seer et al., 2021). Note that after accounting for Common EF variability, there is usually 169 

no residual variability left to be captured by an “inhibition-specific” factor; this was also the case 170 

in the current dataset (see also Friedman & Miyake, 2017; Seer et al., 2021). In the context of the 171 

present study, the “Common EF” factor score was used as the main variable of interest when 172 

assessing the interrelations between EF, Age, and brain/graph metrics in this cohort of older 173 

adults. Factor loadings and model fit indices are provided in the supplement (Table S1). Note that 174 

this procedure also yielded shifting-specific and updating-specific EF factors. Although these 175 

factors were not of interest for the present study, we executed exploratory analyses for 176 

completeness. 177 

2.3 MRI Acquisition 178 

MRI data were acquired on a Philips Achieva 3.0T MRI system equipped with a 32-179 

channel head coil. A high-resolution three-dimensional T1-weighted (T1W) structural image was 180 

collected, using a magnetization-prepared rapid gradient echo (MPRAGE) sequence with the 181 

following parameters: TR/TE = 5.6/2.5 ms; flip angle = 8°; voxel size = 0.9 × 0.9 × 0.9 mm3; 182 

field of view = 256 × 240 × 187.2 mm3; 208 sagittal slices; sensitivity encoding (SENSE) = 2; 183 
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total scan time = ~ 6 minutes. Diffusion MRI data were acquired using a single-shot echo planar 184 

imaging sequence with the following parameters: dMRI volumes with b-values = 700 s/mm2 (16 185 

gradient directions), 1200 s/mm2 (30 gradient directions), and 2800 s/mm2 (50 gradient 186 

directions); 6 interspersed volumes without diffusion weighting (b = 0 s/mm2); flip angle = 90°; 187 

phase-encoding direction = posterior to anterior (PA); field of view = 240 × 240 × 140 mm3; 188 

voxel size = 2.5 × 2.5 × 2.5 mm3, TE/TR = 74/5000 ms; multiband factor = 2; SENSE = 2; 189 

matrix size = 96 × 96; 56 transverse slices; total scan time = ~ 9 minutes. We also acquired five b 190 

= 0 s/mm2 images with reversed phase encoding (AP) for the purpose of susceptibility-induced 191 

distortion correction. 192 

2.4 MRI Processing 193 

The MRtrix3 (Tournier et al., 2019) standard structural connectome construction pipeline 194 

(Smith & Connelly, 2019) available at https://github.com/BIDS-Apps/MRtrix3_connectome and 195 

described in detail elsewhere (Civier et al., 2019; Smith et al., 2015b; Yeh et al., 2016, 2019), 196 

was applied to dMRI and T1W data (see Figure 2A for a general overview of the pipeline). 197 

Where necessary, this pipeline also incorporates commands from FSL (Jenkinson et al., 2012) 198 

and Freesurfer (Fischl, 2012) software packages. Brain parcellation was performed according to 199 

the Desikan atlas (Desikan et al., 2006), which is the default atlas used by Freesurfer. 200 

In brief, dMRI data were denoised (Veraart et al., 2016), Gibbs unringed (Kellner et al., 201 

2016), and corrected for eddy current distortions, motion, and susceptibility induced distortions 202 

(Andersson et al., 2003, 2016, 2017; Andersson & Sotiropoulos, 2016). Three-tissue response 203 

functions representing single-fibre white matter, grey matter and cerebrospinal fluid were 204 

obtained from the corrected dMRI data using an unsupervised approach (Dhollander et al., 2016). 205 

Three-tissue constrained spherical deconvolution (CSD) was performed for each participant, 206 

https://github.com/BIDS-Apps/MRtrix3_connectome
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using the averaged (across all participants) response functions for each tissue type with the multi-207 

shell multi-tissue CSD algorithm (Jeurissen et al., 2014), resulting in the white matter fibre 208 

orientation distribution (FOD) for each voxel. Joint bias field correction and global intensity 209 

normalization of the 3-tissue parameters was performed in the log-domain (Dhollander et al., 210 

2021). Subject’s T1W image was also registered to the mean b = 0 s/mm2 (corrected) image via 211 

rigid-body transformation (Bhushan et al., 2015).  212 

Following the initial processing, tractograms were generated. Thus for each participant, 213 

the 2nd-order integration over FODs algorithm (iFOD2; Tournier et al., 2010) and the 214 

anatomically-constrained tractography (ACT; Smith et al., 2012) with dynamic seeding (Smith et 215 

al., 2015a), FOD amplitude threshold 0.06, step size of 1.25 mm, length of 5–250 mm, and 216 

backtracking (Smith et al., 2012) were used to generate 10 million probabilistic streamlines. 217 

Furthermore, each streamline was assigned a weight, computed using the spherical-deconvolution 218 

informed filtering of tractograms (SIFT2; see Smith et al., 2015a). Based on each participant's 219 

tractogram, an individual connectome was computed using 84 regions-of-interest parcellated in 220 

native space (cortex and cerebellum: Dale et al. (1999); Desikan et al. 2006); subcortical regions: 221 

Patenaude et al. (2011); see Smith et al. (2015a)), with connection strengths calculated by 222 

summing the weights of the relevant streamlines scaled by the proportionality coefficient (Smith 223 

et al., 2015a). These 84 nodes were used for further analyses. To allow for a better understanding 224 

of the distribution of regional differences, the nodes were grouped into seven larger areas 225 

(frontal, parietal, temporal, occipital, insula-cingulate, subcortical (including hippocampus), and 226 

cerebellum for the analysis of regional efficiency (see below). This categorization followed the 227 

grouping of cortical regions suggested by Klein and Tourville (2012), which is based on the 228 

Desikan atlas (Desikan et al., 2006). Intra-regional connection strengths were set to zero 229 

(Rubinov & Sporns, 2010).  230 
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2.5 Global and Local Efficiency as Putative Measures of Integration and Segregation 231 

The Brain Connectivity Toolbox (Rubinov & Sporns, 2010), implemented in MATLAB 232 

(The MathWorks Inc., Natick, MA), was used to compute weighted, undirected network metrics 233 

including, global efficiency (Eglob: 𝐸 =  
1

𝑛
∑ 𝐸𝑖𝑖∈𝑁 =  

1

𝑛
∑

∑ 𝑑𝑖𝑗
−1

𝑗∈𝑁,𝑗≠𝑖

𝑛−1𝑖∈𝑁 , where Ei is the efficiency 234 

of node i; Rubinov & Sporns, 2010), regional efficiency (Ereg), and local efficiency (Eloc: 𝐸𝑙𝑜𝑐 =235 

1

𝑛
∑ 𝐸𝑙𝑜𝑐,𝑖𝑖∈𝑁 =  

1

𝑛
∑

∑ 𝑎𝑖𝑗𝑎𝑖ℎ[𝑑𝑗ℎ(𝑁𝑖)]
−1

𝑗,ℎ∈𝑁,𝑗≠𝑖

𝑘𝑖(𝑘𝑖−1)𝑖∈𝑁 , where Eloc,i is the local efficiency of node i, and 236 

djh(Ni) is the length of the shortest path between j and h, that contains only neighbors of i; 237 

Rubinov & Sporns, 2010). Please note that Eloc is the average of Ereg across all nodes. In this 238 

study, the recommended version described in Wang et al. (2017) was used to calculate Ereg as it is 239 

a true generalization of the binary variant.  240 

Eglob measures how efficient the parallel information transfer (flow) in the network is and 241 

thus is an index of network integration. Ereg and Eloc (i.e., the average of Ereg across all nodes) 242 

measure the efficiency of the communication amongst the first neighbors of a node when that 243 

node is removed. These metrics indicate how well a network tolerates faults and thus are indices 244 

of network segregation (Latora & Marchiori, 2001). In other words, the intercommunicability of 245 

any two nodes in the network is reflected in the network integration, or global efficiency. In 246 

contrast, the efficiency of specific clusters is reflected in the network segregation, or regional and 247 

local efficiency (see also Cohen & D’Esposito, 2016). 248 

We decided to focus on efficiency metrics because these are reflective of the integration 249 

and segregation of the network’s connectivity and because these metrics have been associated 250 

with age and/or to executive functioning in older adults (Li et al., 2020; Madden et al., 2021, Wen et 251 

al., 2011; Zhao et al., 2015). Furthermore, regional efficiency supports the identification of relevant nodes 252 

in the association among efficiency, age and executive functioning, rendering higher specificity. 253 
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Nonetheless, we admit that other network properties may also be relevant. Accordingly, we 254 

included analogous supplementary analyses of other network metrics (density, clustering, 255 

modularity and strength). 256 

2.6 Statistical Analysis  257 

Kolmogorov-Smirnov tests did not show significant deviations from normality, which 258 

was confirmed by visual inspection for the variables of interest. Partial (Pearson) correlation 259 

analyses controlling for sex and education were used to investigate the bivariate associations 260 

between age, EF, and network metrics. To examine whether age-associated variations in network 261 

metrics contribute to age-associated differences in EF in a cohort of older adults, mediation 262 

analyses were performed (MacKinnon et al., 2007). To this end, the commonly-used simple 3-263 

path mediation model (Baron & Kenny, 1986), implemented in the PROCESS V4.0 plugin 264 

(Hayes & Rockwood, 2017) developed for IBM SPSS (V28.0 for Windows), was used (Figure 265 

2B). Multiple comparisons were controlled using a False Discovery Rate (FDR) correction 266 

(Benjamini & Hochberg, 1995). 267 

In this model, the total effect (path c) of independent variable (IV) on dependent variable 268 

(DV) was separated into two distinct pathways (see Figure 2): (1) indirect (mediation) effect 269 

(path ab) with path a reflecting the effect of IV on the mediator variable (M) and path b 270 

reflecting the effect of mediator variable on DV while controlling for IV; (2) direct effect of IV 271 

on DV (path c’), i.e., the effect of IV on DV independent of its effect through the mediator 272 

variable. Of particular interest was the indirect effect (path ab), since a significant indirect effect 273 

would indicate significant mediation by the mediator variable used in the model. This was 274 

accomplished using 5,000 bootstrap samples to determine bias-corrected confidence intervals for 275 

the indirect effects. Accordingly, indirect effects with 95% confidence intervals excluding zero 276 
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were regarded as significantly mediating the relation between IV and DV. In this study, age, 277 

graph metrics, and common EF were, respectively, assigned as IV, M and DV. Sex and education 278 

were included as nuisance variables in all mediation models. 279 

We conducted supplementary analyses for global metrics other than efficiency (density, 280 

clustering, modularity, and strength) to investigate whether these variables were related to age 281 

and common EF and to examine whether they mediated the age-common EF relationship. These 282 

analyses are presented in the Supplementary material (Tables S3-S9). 283 

 284 

3 Results 285 

3.1 Age-Associated Differences in Executive Functioning in Older Adults 286 

Within this cohort of older adults, age was significantly correlated with Common EF 287 

(r = -.52, p < .001; note that this correlation remained significant when sex and education were 288 

omitted as controlling variables, r = -.50, p < .001). The negative correlation coefficient indicates 289 

older age to be associated with lower Common EF scores (i.e., poorer EF) (Figure 3A).  290 

3.2 Age-Associated Differences in Brain Efficiency in Older Adults 291 

Investigations into brain efficiency in this cohort of older adults showed significant 292 

negative correlations for global (Eglob: .026 ± .004; r = -.43, p < .001) and local (Eloc: .003 ± 293 

.0005; r = -.43, p < .001) efficiency parameters with age. Omitting sex and education as 294 

controlling variables did not qualitatively change these results (Eglob: r = -.42, p < .001; Eloc: r = -295 

.41, p < .001). The negative correlation coefficients indicated a decrease in global (i.e., efficiency 296 

of information transfer for the entire brain) and local (i.e., average efficiency of information 297 

transfer in local subnetworks) efficiency of the brain with increasing age. Furthermore, Ereg of 298 

51% (43 out of 84) of the brain regions showed a significant (FDR corrected) negative correlation 299 
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with age, indicating a decrease in regional efficiency as age increases (Table 1, Figure 3B for an 300 

example). To obtain a better understanding of how these regions are distributed, the individual 301 

nodes were assigned to one of seven areas including frontal (22 nodes), parietal (10 nodes), 302 

temporal (18 nodes), occipital (8 nodes), insula-cingulate (10 nodes), subcortical (including 303 

hippocampus) (14 nodes), and cerebellum (2 nodes), according to a predefined categorization 304 

(Klein & Tourville, 2012). This assignment revealed that 18 of the negatively correlated regions 305 

were located in frontal areas, 9 in parietal areas, 9 in  temporal areas, 3 in occipital areas, and 4 in 306 

below-/sub-cortical areas. No significant region was found in insula-cingulate and cerebellum. 307 

No significant positive correlation with age was found for Ereg of any brain region. Finally, 308 

supplementary analyses showed that density, clustering and strength (but not modularity) were 309 

negatively related to age (Table S4). 310 

3.3 Relationship between Brain Efficiency and Executive Functioning in Older Adults 311 

The Eglob (r = .33, p = .001) and Eloc (r = .37, p = .001) were significantly correlated with 312 

Common EF in older adults. Omitting sex and education as control variables did not qualitatively 313 

change these results (Eglob: r = .35, p = .001, Eloc: r = .39, p < .001). The positive correlation 314 

coefficients indicated that superior Common EF was associated with higher global (i.e., 315 

efficiency of information transfer for the entire brain) and local (i.e., average efficiency of 316 

information transfer in local subnetworks) efficiency of the brain. Moreover, Ereg of 55% (46 out 317 

of 84) of the brain regions showed a significant (FDR corrected) positive correlation with 318 

Common EF factor (Table 2, Figure 3C for an example). Thus, higher regional efficiency 319 

corresponded to better Common EF. Assigning brain regions to the different areas (Klein & 320 

Tourville, 2012) revealed that 16 of the positively correlated regions were located in frontal 321 
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areas, 10 in parietal areas, 7 in temporal areas, 4 in occipital areas, and 9 in below-/sub-cortical 322 

areas. No significant region was found in insula-cingulate and cerebellum.  323 

Supplementary analyses showed that neither the shifting-specific nor the updating-324 

specific factor were correlated with the efficiency metrics (Table S10). In addition, density, 325 

clustering and strength (but not modularity) were positively related to Common EF (Table S4). 326 

3.4 Mediation of Age-Associated Differences in Brain Efficiency on Age-Associated 327 

Differences in Executive Functioning in Older Adults 328 

Using Eglob as a mediator, no significant mediation effect on age-associated decrease in 329 

Common EF (βc = -.53, p < .001) was found (βab = -.06, CI: [-.17, .02]; βa = -.44, p < .001; 330 

βb = .13, p = .21, βc’ = -.47, p < .001; sex standardized coefficient = -.19, p = .05; education 331 

standardized coefficient = .09, p = .37). 332 

Eloc significantly mediated the age-associated differences in Common EF in this cohort of 333 

older adults (βc = -.53, p < .001; βab = -.07, CI: [-.16, -.002]; βa = -.44, p < .001; βb = .18, p = .09; 334 

βc’ = -.45, p < .001; sex standardized coefficient = -.19, p = .05; education standardized 335 

coefficient = .09, p = .37).  336 

To identify for which brain regions Ereg mediated the age-associated differences in EF, we 337 

restricted the mediation analysis to those 38 regions showing significant associations with both 338 

age and Common EF in previous analyses (i.e., common regions in Tables 1 and 2). The result of 339 

this analysis indicated that the age-associated differences in regional efficiency of bilateral 340 

precuneus (parietal), bilateral hippocampus (below/sub-cortical), left superior frontal gyrus 341 

(frontal), left medial orbitofrontal gyrus (frontal), left thalamus (below/sub-cortical), left lingual 342 

gyrus (occipital), and right pars orbitalis (frontal) significantly contributed to the differences in 343 

Common EF in older adults (Table 3, Figures 3D-E for an example). 344 
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Supplementary analyses showed that from the global metrics commonly related to age and 345 

Common EF (density, clustering and strength), only clustering was a significant mediator of the 346 

relationship between age and Common EF (Table S5).347 
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 348 

4 Discussion 349 

This study addressed age-associated differences in global, local and regional efficiency of 350 

structural connectivity and their contribution to age-associated differences in EF in healthy older 351 

adults. We performed latent variable modelling for the assessment of EF along with the most 352 

recent state-of-the-art techniques for structural connectome construction. We found negative 353 

associations between age and global (i.e., efficiency of information transfer for the entire brain), 354 

local (i.e., average efficiency of information transfer in local subnetworks), and—for a range of 355 

brain areas—regional network efficiency metrics of structural brain networks in older adults. In 356 

addition, better EF performance was associated with higher global, local, and—for a range of 357 

brain areas—regional network efficiency. Importantly, we found that local efficiency and 358 

regional efficiency of particular nodes mediated age-associated interindividual variations in EF in 359 

older adults. In contrast, global efficiency was not a significant mediator, which may suggest that 360 

the lower performance in EF with age in older adults is mediated by a decreased segregation 361 

rather than a decreased integration. 362 

4.1 Age-Associated Differences in Executive Functioning in Older Adults 363 

Our results revealed that age was negatively related to EF—indicated by a latent factor 364 

reflecting general executive abilities—in a group of older adults. In other words, relatively 365 

younger age within the group of older adults studied here (aged between 60 and 85 years) was 366 

associated with better EF performance, which is in line with previous research (Ferguson et al., 367 

2021; Maldonado et al., 2020). Note that this finding does not demonstrate a decline in EF that is 368 

attributable to the aging process itself, but it does reflect poorer EF performance in older in 369 

comparison to relatively younger individuals (in the population of older adults).  370 
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 371 

4.2 Age-Associated Differences in Brain Efficiency in Older Adults 372 

Normal brain function implies two co-existing fundamental aspects of functional 373 

organization, namely segregation and integration of information in brain networks. Segregation 374 

refers to the ability for specialized processing within densely interconnected groups of the brain 375 

and integration refers to the ability to combine the specialized information from distributed brain 376 

networks (Rubinov and Sporns, 2010). 377 

In this study, we focused on graph theory metrics of global and local efficiency of 378 

structural brain networks as measures of integrated and segregated information transfer, 379 

respectively. Note that graph theory also offers alternative metrics to cover network segregation 380 

and integration characteristics, such as clustering and transitivity (segregation) and characteristic 381 

path length (integration) (Rubinov and Sporns, 2015; Farahani et al., 2019). The latter is highly 382 

related to the global efficiency measure (Madole et al., 2023), as both metrics use the estimation 383 

of the shortest path among nodes. 384 

Age showed significant negative associations with both ‘’global’’ (i.e., efficiency of 385 

information transfer for the entire brain) and ‘’local’’ (i.e., average efficiency of information 386 

transfer in local subnetworks) efficiency. In other words, the global and local efficiency of 387 

structural brain networks was lower as a function of age (note that this does not imply an effect of 388 

aging, i.e. change over time). These findings are in line with earlier studies, demonstrating lower 389 

efficiency of structural brain networks at higher age (Bi et al., 2021; Gong, Rosa-Neto, et al., 390 

2009; Hinault et al., 2021; Li et al., 2020; Wen et al., 2011; Zhao et al., 2015).  391 

Both global efficiency and local efficiency both are metrics of information transfer within 392 

the brain, but they reflect different aspects: global efficiency reflects how well a network is 393 

integrated, whereas local efficiency reflects how clearly subnetworks are segregated (Cohen & 394 
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D’Esposito, 2016; Latora & Marchiori, 2001; Rubinov & Sporns, 2010). Both global and local 395 

efficiency are decreased in older age. To the extent that network integration and network 396 

segregation are important for optimal functioning, our results may be suggestive of age-397 

associated differences in successful information processing. Such a disruption of structural 398 

networks has been interpreted as a network “disconnection”, possibly underlying age-associated 399 

EF differences (see above; Bennett & Madden, 2014; Fjell et al., 2017; Madden et al., 2012; 400 

O’Sullivan et al., 2001). 401 

Several studies have suggested an association of older age and decreased segregation of 402 

functional networks (i.e., increased connectivity between functional networks; Antonenko & 403 

Flöel, 2014; Damoiseaux, 2017; Deery et al., 2023; King et al., 2018). Our current results 404 

complement those findings in that they reveal lower efficiency of information transfer in 405 

structural brain networks in older individuals. 406 

In this cohort of older adults, we found lower efficiency to be associated with older age in 407 

an aggregated measure across all 84 brain regions under investigation. In addition, more fine-408 

grained analyses revealed that these effects were found across the whole brain territory, except 409 

for limbic (insula-cingulate) regions and the cerebellum. The most prominent effects were 410 

observed in frontal, parietal, and subcortical (including hippocampus) regions. The negative 411 

association between age differences and network efficiency for fronto-parietal and subcortical 412 

(including hippocampus) regions in the present dataset is roughly consistent with previous 413 

findings (Bi et al., 2021; Li et al., 2020). Notably, some of these brain areas have been identified 414 

by functional neuroimaging studies to be crucially involved in successful EF (Niendam et al., 415 

2012; Rodríguez-Nieto et al., 2022).  416 
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4.3 Relationship between Brain Efficiency and Executive Functioning in Older Adults 417 

Both global (i.e., efficiency of information transfer for the entire brain) and local (i.e., 418 

efficiency of information transfer for the local subnetworks) efficiency of structural brain 419 

networks showed marked positive correlations with EF in older adults in this study. In other 420 

words, better EF was linked to higher efficiency—thus to both better network integration (as 421 

indicated by global efficiency) and to better network segregation (as indicated by local 422 

efficiency). This is consistent with the idea that successful EF relies on intact white matter 423 

connections for efficient information transfer (Bennett & Madden, 2014; Fjell et al., 2017; 424 

Madden et al., 2012). 425 

Similar to the link between age differences and white matter measures, local efficiency 426 

was related to EF in an aggregated measure across all brain regions under investigation. In 427 

addition, more fine-grained analyses showed associations between regional efficiency and EF to 428 

be centered on fronto-parietal and subcortical (including hippocampus) regions, which is 429 

consistent with the areas implicated in EF in functional neuroimaging work (Niendam et al., 430 

2012; Rodríguez-Nieto et al., 2022). These areas also correspond closely to the set of brain 431 

regions where better EF was reported to correlate with higher structural regional connectivity in 432 

previous work (Wen et al., 2011). 433 

Reduced network efficiency might hinder successful executive performance. Specifically, 434 

it can be speculated that the reduced quality of structural networks (as reflected in reduced global 435 

and local network efficiency) hampers the precise recruitment of the appropriate subnetworks 436 

when performing a cognitively challenging task, which may render information processing less 437 

efficient and more erroneous. Moreover, (haphazard) excessive recruitment of additional brain 438 

areas might be facilitated, further reducing the specificity of neural recruitment and increasing 439 

inappropriate interference. In addition, the lower efficiency of local structural networks found in 440 
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the present data may align with the notion that functional connectivity within networks is often 441 

decreased in older age (Deery et al., 2023). Note that such interpretations are speculative and 442 

require functional and structural network characteristics to be studied simultaneously.  443 

As global, local and regional efficiency of a large set of nodes were commonly related to 444 

age and executive functioning, the next step was to examine whether networks efficiency 445 

mediated the relationship between age and executive functioning in older adults. 446 

 447 

4.4 Mediation of Age-Associated Differences in Brain Efficiency on Age-Associated 448 

Differences in Executive Functioning in Older Adults 449 

Global efficiency (i.e., efficiency of information transfer for the entire brain) did not 450 

significantly mediate age-associated EF decrease. However, our analyses revealed a significant 451 

contribution of local efficiency (i.e., efficiency of information transfer in local subnetworks 452 

averaged across all 84 brain areas under investigation) to the relationship between age and EF in 453 

older adults. This mediation of age-associated EF differences by local efficiency was driven by 454 

the regional efficiency of a number of brain regions. Specifically, we found significant mediating 455 

effects of regional efficiency for frontal (left superior frontal gyrus and medial orbitofrontal 456 

gyrus; and right pars orbitalis), parietal (bilateral precuneus), occipital (left lingual gyrus) and 457 

subcortical (bilateral hippocampus; left thalamus) areas. Some of these brain areas correspond to 458 

the fronto-parietal and subcortical areas that are often associated with EF in functional 459 

neuroimaging (Niendam et al., 2012; Rodríguez-Nieto et al., 2022). 460 

In the current dataset, local efficiency (reflecting segregation) was identified as a mediator 461 

of the relationship between age and EF, whereas no such relationship was detected for global 462 

efficiency (reflecting integration). Given the absence of a significant mediation for global 463 
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efficiency (which does not allow for firm conclusions in either direction), it remains unclear if 464 

this pattern of results reflects that local efficiency is more crucial than global efficiency in 465 

explaining the age-associated EF difference that we found here. To the extent that (a) the 466 

associations between inter-individual differences found here are reflective of intra-individual 467 

processes (but see Borsboom et al., 2009), and (b) the absence of a significant mediation of the 468 

age-EF relationship by global efficiency reflects that global efficiency truly has no mediating role 469 

in that relationship, one may speculate that local efficiency is especially important in the age-470 

related differences in EF functioning. Supplementary analyses further showed that clustering -471 

another measure of segregation- was also a significant mediator between age and EF. These 472 

results suggest that segregation is essential in mediating the association between aging and 473 

executive functioning. It should also be noted that the indirect mediation effects observed here 474 

were rather small, indicating that other factors are relevant in determining the association 475 

between age and EF. Longitudinal observation studies may show if alterations in structural brain 476 

networks, as they occur during aging, predict EF deterioration (see also Fjell et al., 2017; Westlye 477 

et al., 2010). If so, structural brain network metrics might serve as early indicators of age-478 

associated EF decline. 479 

 480 

4.5 Strengths and Limitations 481 

The strengths of this study are its relatively large sample size, allowing for the coverage 482 

of a broad age range within older adults and the combination of a solid EF measure (as derived 483 

from latent variables) with one of the most recent state-of-the-art techniques in the analysis of the 484 

diffusion neuroimaging data (i.e., CSD in combination with ACT and SIFT2). For the assessment 485 

of EF, we utilized a large battery of neuropsychological tasks in order to extract a latent measure 486 
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of EF (Friedman et al., 2016), which helps overcoming the limitations associated with single-task 487 

measures (Miyake et al., 2000; Miyake & Friedman, 2012).  488 

For the assessment of structural brain networks, we obtained dMRI data that we analyzed 489 

using the constrained spherical deconvolution (CSD) model in combination with anatomically-490 

constrained tractography (ACT) and spherical-deconvolution informed filtering of tractograms 491 

(SIFT2) (Smith et al., 2012, 2015a; Tournier et al., 2010). These advanced analysis techniques 492 

mitigate methodological limitations with regard to crossing fibers that constitute a limitation for 493 

more traditional approaches (e.g., fractional anisotropy measures derived from diffusion tensor 494 

imaging) and have been shown to provide more reproducible and biologically meaningful 495 

connectomes (Smith et al., 2015b). Hence, this study complements the existing literature, in that 496 

it combines a rigorous approach to EF assessment with advanced techniques for the analysis of 497 

structural brain network topology in a graph-theoretical approach (see also Madden et al., 2012). 498 

When interpreting these results, the following limitations should be considered. First, 499 

these data are correlational in nature. Hence, they do not allow for mechanistic conclusions 500 

regarding the direct involvement of the brain areas in cognitive processes, as discussed here, and 501 

individual differences in structural network parameters should not be mistaken to reflect 502 

proximate causes of EF differences (Borsboom et al., 2009). In addition, given the cross-sectional 503 

nature of these findings, it cannot be concluded based on the current data alone that reduced 504 

network efficiency in older as compared to younger individuals (as reflected in the correlations of 505 

age and network efficiency metrics) results from the aging process per se. Nevertheless, 506 

longitudinal research has identified age-related decreases of structural brain networks (Alloza et 507 

al., 2018; Fjell et al., 2017), and our results are compatible with the notion that structural brain 508 

networks are subject to decline during aging. Hence, interventions targeting the preservation of 509 

structural brain networks, and more specifically local efficiency (e.g., cognitive training 510 
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interventions, Caeyenberghs et al., 2016), may be an interesting route for future research. 511 

Simultaneous assessment of the functional connectome in such studies would also allow for 512 

evaluating how differences in structural and functional connectomes are temporally related. This 513 

may be informative for generating mechanistic hypotheses regarding the consequences of age-514 

related decline in structural connectivity. In addition, functional studies would allow for the 515 

assessment of more indirect functional connectivity and information transfer (e.g., two nodes 516 

being connected via a third node), which is not possible based on the analysis of direct 517 

connections of the structural connectome reported here. 518 

Second, the current dataset does not allow for a comparison of the established 519 

relationships with a younger control group. Hence, it remains unclear whether similar mediation 520 

exists at young age (i.e., < 60 years of age) or whether this pattern is typical for the subpopulation 521 

of older adults (i.e., ≥ 60 years of age). Still, our data provide valuable information regarding the 522 

link between age, structural brain connectivity, and EF for older adults and thus contribute to the 523 

understanding of EF and the role of brain networks in the aging population. 524 

The current study did not systematically address sex differences in the relationships 525 

between age, brain efficiency parameters, and EF. In this dataset, neither EF, nor global or local 526 

efficiency differed significantly between the sexes (all p > .372). Future work may further 527 

explore the nature and magnitude of sex effects, potentially in combination with neurochemical 528 

assessments. When addressing such sex effects, the role of postmenopausal shifts in 529 

neurotransmission should be considered by including a young control group and/or employing a 530 

longitudinal design. Finally, it should be noted that our choice to use Desikan’s atlas for brain 531 

parcellation and grouping according to Klein & Tourville (2012) resulted in this particular 532 

architecture of the structural connectome. The automatization for the use of this atlas has shown 533 

to be anatomically valid and reliable (Desikan et al., 2006) and has been widely adopted, which 534 
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allows cross-study comparability. Nonetheless, alternative parcellations and groupings, for 535 

instance according to functional networks (Yeo et al., 2011), would also have been conceivable, 536 

and may have resulted in somewhat different conclusions. Analyses focused on networks or 537 

distinct tracts that are more specifically related to EF, rather than a global approach as employed 538 

here, may provide a more detailed perspective on microstructural alterations in these regions, and 539 

increase the sensitivity to detect differences between EF subdomains. 540 

4.6 Conclusion 541 

This study suggests that the decreased executive functioning performance with age in 542 

older adults is mediated by changes in the local efficiency of structural connectivity. That a 543 

similar mediation effect is observed from the clustering analysis while the mediation effect from 544 

global efficiency is lacking, suggests that the decrease in network segregation in older adults is 545 

associated with higher-order cognitive functions, whereas no such relationship is being observed 546 

for network integration. Further evidence suggests that this effect is mainly driven by a lower 547 

connectivity efficiency in particular brain regions (superior frontal gyrus, orbitofrontal regions, 548 

precuneus, lingual gyrus, hippocampus and thalamus). These nodes may be critical for executive 549 

functioning and may serve as processing hubs. Future studies could possibly reveal which 550 

biological and environmental factors influence structural segregation. 551 
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Table 1. Regions with significant age-Ereg association (controlled for sex and years of education) 986 

are listed according to hemisphere, lobe, and ascending order of p-value (FDR critical p = .026). 987 

 988 

Region Lobe/Area r p 

Left Hemisphere    

Pars Orbitalis Frontal -.44 < .001 

Pars Opercularis Frontal -.43 < .001 

Rostral Middle Frontal Gyrus  Frontal -.42 < .001 

Pars Triangularis Frontal -.39 < .001 

Superior Frontal Gyrus Frontal -.33 .002 

Lateral Orbitofrontal Gyrus Frontal -.33 .002 

Precentral Gyrus Frontal -.31 .004 

Caudal Middle Frontal Frontal -.27 .014 

Medial Orbitofrontal Gyrus Frontal -.26 .017 

Superior Parietal Gyrus Parietal -.47 < .001 

Precuneus Parietal -.41 < .001 

Supramarginal Gyrus Parietal -.38 < .001 

Inferior Parietal Gyrus Parietal -.37 .001 

Postcentral Gyrus Parietal -.33 .002 

Middle Temporal Gyrus Temporal -.34 .002 

Superior Temporal Gyrus Temporal -.31 .006 

Transverse Temporal Gyrus Temporal -.27 .014 

Inferior Temporal Gyrus Temporal -.25 .025 

Lateral Occipital Gyrus Occipital -.31 .004 

Hippocampus Subcortical -.38 < .001 

Thalamus Subcortical -.34 .002 

Right Hemisphere    

Rostral Middle Frontal Gyrus Frontal -.54 < .001 

Pars Triangularis Frontal -.44 < .001 

Pars Orbitalis Frontal -.43 < .001 

Superior Frontal Gyrus Frontal -.42 < .001 

Precentral Gyrus Frontal -.34 .002 

Caudal Middle Frontal Gyrus Frontal -.32 .004 

Pars Opercularis Frontal -.32 .004 

Lateral Orbitofrontal Gyrus Frontal -.26 .021 

Paracentral Gyrus Frontal -.25 .021 

Superior Parietal Gyrus Parietal -.47 < .001 

Precuneus Parietal -.46 < .001 
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Postcentral Gyrus Parietal -.43 < .001 

Inferior Parietal Gyrus Parietal -.38 < .001 

Entorhinal Cortex Temporal -.37 < .001 

Superior Temporal Gyrus Temporal -.37 <.001 

Inferior Temporal Gyrus Temporal -.35 .001 

Fusiform Gyrus Temporal -.26 .016 

Banks of the Superior Temporal 

Sulcus 

Temporal -.25 .025 

Lateral Occipital Gyrus Occipital -.37 <.001 

Cuneus Occipital -.27 .013 

Hippocampus Subcortical -.47 < .001 

Accumbens Subcortical -.41 < .001 

 989 

Note. r-values are rounded to two decimals. Assignment of lobes/areas according to Desikan et 990 

al. (2006).   991 

 992 

Table 2. Regions with significant Common EF-Ereg association (controlled for sex and years of 993 

education) are listed according to hemisphere, lobe, and ascending order of p-value (FDR 994 

critical p = .027). 995 

 996 

Region Lobe/Area r p 

Left Hemisphere    

Superior Frontal Gyrus Frontal .35 .001 

Medial Orbitofrontal Gyrus Frontal .35 .001 

Rostral Middle Frontal Gyrus Frontal .34  .002 

Lateral Orbitofrontal Gyrus Frontal .33 .003 

Pars Opercularis Frontal .31 .005 

Pars Orbitalis Frontal .29 .007 

Frontal Pole Frontal .26 .017 

Precentral Gyrus Frontal .25 .022 

Precuneus Parietal .41 < .001 

Superior Parietal Gyrus Parietal .33 .002 

Inferior Parietal Gyrus Parietal .31 .004 

Supramarginal Gyrus Parietal .29 .007 
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Postcentral Gyrus Parietal .27 .013 

Middle Temporal Gyrus Temporal .31 .004 

Transverse Temporal Gyrus Temporal .28 .011 

Banks of the Superior Temporal 

Sulcus 

Temporal .25 .024 

Superior Temporal Gyrus Temporal .25 .025 

Lingual Gyrus Occipital .38 < .001 

Cuneus Occipital .26 .018 

Hippocampus Subcortical .37 < .001 

Thalamus Subcortical .36 <.001 

Putamen Subcortical .29 .007 

Accumbens Subcortical .28 .012 

Caudate Subcortical .26 .019 

Right Hemisphere    

Pars Orbitalis Frontal .36 <.001 

Superior Frontal Gyrus Frontal .33  .003 

Pars Triangularis Frontal .31 .005 

Medial Orbitofrontal Gyrus Frontal .31 .006 

Rostral Middle Frontal Gyrus Frontal .29 .008 

Lateral Orbitofrontal Gyrus Frontal .28 .011 

Frontal Pole Frontal .28 .012 

Precentral Gyrus Frontal .27 .012 

Precuneus Parietal .42 < .001 

Superior Parietal Gyrus Parietal .29 .008 

Postcentral Gyrus Parietal .27 .013 

Posterior Cingulate Parietal -.25 .025 

Inferior Parietal Gyrus Parietal .25 .027 

Inferior Temporal Gyrus Temporal .33 .002 

Fusiform Gyrus Temporal .29  .008 

Middle Temporal Gyrus Temporal .28 .011 

Cuneus Occipital .29 .007 

Lateral Occipital Gyrus Occipital .27 .016 

Hippocampus Subcortical .41 < .001 

Thalamus Subcortical .32 .003 

Accumbens Subcortical .31 .005 

Caudate Subcortical .25 .023 

 997 

Note. r-values are rounded to two decimals. Assignment of lobes/areas according to Desikan et 998 

al. (2006).  999 
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 1000 

Table 3. Brain regions with Ereg significantly mediating the age-associated differences in 1001 

Common EF in older adults. The regions are listed according to hemisphere and lobe. Zero 1002 

outside the CI indicates significance of the mediation effect (βab). We note that βc (i.e., total effect 1003 

of age on Common EF) is the same in all models.  1004 

 1005 

Region Lobe/Area βc βc’ βab Boot 

SE 

Boot 

LLCI 

Boot 

ULCI 

βa βb 

Left 

Hemisphere 

         

Superior 

Frontal 

Gyrus 

Frontal -.53*** -.46*** -.07 .04 -.15 -.01 -.34** .21* 

Medial 

Orbitofrontal 

Gyrus 

Frontal -.53*** -.47*** -.06 .04 -.14 -.01 -.27* .23* 

Precuneus Parietal -.53*** -.44*** -.09 .04 -.19 -.02 -.45*** .21* 

Lingual 

Gyrus 

Occipital -.53*** -.47*** -.07 .04 -.14 -.002 -.25* .26** 

Hippocampus Subcortical -.53*** -.46*** -.07 .04 -.16 -.001 -.39*** .18 Ϯ 

Thalamus Subcortical -.53*** -.46*** -.07 .04 -.16 -.001 -.34*** .21*** 

Right 

Hemisphere 

         

Pars Orbitalis Frontal -.53*** -.46*** -.07 .04 -.16 -.002 -.45*** .17Ϯ 

Precuneus Parietal -.53*** -.42*** -.11 .05 -.22 -.01 -.48*** .23* 

Hippocampus Subcortical -.53*** -.43*** -.09 .05 -.21 -.003 -.48*** .21 Ϯ  

 1006 

Note. β = standardized regression coefficient; CI = bias-corrected 95% confidence interval; Boot 1007 

SE, LLCI, and ULCI = mediation effect’s standard error, lower, and upper limit of CI obtained by 1008 

bootstrapping (n = 5000). Assignment of lobes/areas according to Desikan et al. (2006). 1009 

*** p < .001; ** p < .005; * p < .050; Ϯ p < .100 1010 

FIGURE CAPTIONS 1011 
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Figure 1 Flowchart Depicting Reasons for Exclusion from Analysis 1012 

Figure 2 General Overview of Applying Graph Theoretical Analysis to Study Brain Networks (A) 1013 

and Overview of the Mediation Model (B).  (A) The anatomical constrained tractography (ACT) 1014 

framework was applied to the preprocessed dMRI data and T1W image of an exemplary 1015 

participant to reconstruct the whole brain tractogram (overlaid on T1W image). The streamlines’ 1016 

weights obtained via SIFT2 (spherical-deconvolution informed filtering of tractograms) were 1017 

then used in conjunction with the brain nodes image, obtained by parcellating the T1W image, to 1018 

construct an 84 x 84 weighted and symmetrical connectivity matrix. The color bar shows 1019 

connection strength in logarithmic scale and missing/removed connections are in black. Graph 1020 

theoretical analysis  was used to calculate the weighted version of network topology metrics of 1021 

interest (here: global efficiency, local efficiency, regional efficiency). 1022 

(B) The Mediation model was used to determine whether the age‐related differences in EF in 1023 

older adults are mediated by alterations in network metrics. Path c (solid line) = total effect of age 1024 

(IV = independent variable) on executive function (DV = dependent variable). This total effect 1025 

was, per metric of interest, separated into two distinct pathways: (1) path ab (dashed 1026 

arrows) = indirect (mediation) effect, with path a reflecting the effect of age on the network 1027 

metric (M = mediator variable) and path b reflecting the effect of network metric on executive 1028 

function; (2) path c′ (dotted arrow) = direct effect, i.e., the effect of age on executive function 1029 

independent of its effect through the network metric. 1030 

Figure 3 Age-brain efficiency-behavior associations in older adults. Age was negatively 1031 

associated with both (A) Common EF and (B) Left Precuneus (as an exemplary region) efficiency 1032 

in older adults. (C) Higher Left Precuneus efficiency was related to superior Common EF. (D) The 1033 

3D representation of brain regions for which the efficiency significantly mediated the age-1034 

associated differences in Common EF in older adults (listed in Table 3) is shown on the glass brain 1035 
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of the same representative participant used in Figure 2. (E) The standardized path coefficients of 1036 

the mediation model used for the same region as in (B) and (C) (i.e., Left Precuneus) are shown. 1037 

In all plots sex and education are controlled. 1038 

A = anterior; P = posterior; L.HI = Left Hippocampus; L.LG = Left Lingual Gyrus; 1039 

L.MOFG = Left Medial Orbitofrontal Gyrus; L.PCU = Left Precuneus; L.RMFG = Left Rostral 1040 

Middle Frontal Gyrus; L.SFG = Left Superior Frontal Gyrus; L.TH = Left Thalamus; 1041 

R.FG = Right Fusiform Gyrus; R.HI = Right Hippocampus; R.ITG = Right Inferior Temporal 1042 

Gyrus; R.LOFG = Right Lateral Orbitofrontal Gyrus; R.PCU = Right Precuneus; R.POR = Right 1043 

Pars Orbitalis; R.SFG = Right Superior Frontal Gyrus. 1044 

*** p < .001; ** p < .005; * p < .050; CI: 95% bias-corrected bootstrapped confidence interval. 1045 

 1046 


