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ABSTRACT

Brain structure-function coupling has been studied in health and disease by many different
researchers in recent years. Most of the studies have estimated functional connectivity
matrices as correlation coefficients between different brain areas, despite well-known
disadvantages compared with partial correlation connectivity matrices. Indeed, partial
correlation represents a more sensible model for structural connectivity since, under a
Gaussian approximation, it accounts only for direct dependencies between brain areas.
Motivated by this and following previous results by different authors, we investigate structure-
function coupling using partial correlation matrices of functional magnetic resonance imaging
brain activity time series under various regularization (also known as noise-cleaning)
algorithms. We find that, across different algorithms and conditions, partial correlation
provides a higher match with structural connectivity retrieved from density-weighted imaging
data than standard correlation, and this occurs at both subject and population levels.
Importantly, we also show that regularization and thresholding are crucial for this match to
emerge. Finally, we assess neurogenetic associations in relation to structure-function coupling,
which presents promising opportunities to further advance research in the field of network
neuroscience, particularly concerning brain disorders.

AUTHOR SUMMARY

A precise understanding of how brain structure and function interact is fundamentally relevant
to understanding disease. For the functional representation, most of the previous research has
used correlation methods, which have limitations. Our study explores a different approach
called partial correlation methods, which more accurately reflect the brain’s direct
connections. We found that partial correlation aligns better with the brain’s structural
connectivity than standard methods, both in individuals and groups. Additionally, we
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identified promising links between brain connectivity and genetics, offering new insights into
brain disorders. Our work highlights the importance of using advanced connectivity methods
to improve our understanding of the brain’s structure-function relationship, paving the way for
future research in brain health and disease.

INTRODUCTION

A fundamental problem in network neuroscience is understanding the relationship between
functional connectivity (FC), accounting for similarity in the activation patterns between brain
areas, and structural connectivity (SC), which maps the brain’s anatomical connections
(Alonso-Montes et al., 2015; Amor et al., 2015; Bansal, Nakuci, & Muldoon, 2018; Deco, Jirsa,
Mcintosh, Sporns, & Kötter, 2009; Friston, 1994; Goñi et al., 2014; Greicius, Supekar, Menon,
& Dougherty, 2009; Honey, Kötter, Breakspear, & Sporns, 2007; Honey et al., 2009; Honey,
Thivierge, & Sporns, 2010; Park & Friston, 2013; Sarwar, Tian, Yeo, Ramamohanarao, &
Zalesky, 2021; Sporns & Betzel, 2016; Stramaglia et al., 2017; Suárez, Markello, Betzel, &
Misic, 2020; van den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009; Vázquez-Rodríguez et al.,
2019; Zamani Esfahlani, Faskowitz, Slack, Mišić, & Betzel, 2022). Numerous, rapidly evolv-
ing functional states emerge from the relatively static structural connectivity (Park & Friston,
2013). The underlying structure partially determines function and activity that, in turn,
shapes the structure through the processes of neuromodulation and plasticity (Batista-García-
Ramó & Fernández-Verdecia, 2018; Hagmann et al., 2010; Park & Friston, 2013). The investi-
gation of the relationship between structure and function as a biomarker is generally referred
to as structure-function coupling (SFC; Fotiadis et al., 2024).

It has been found that, while the intensities (weights) of the single connections (links) of the
SC and FC are positively correlated at rest (Honey et al., 2009), this correlation is not always
consistent and exhibits variability across individuals (Griffa, Amico, Liégeois, Van De Ville, &
Preti, 2022; Gu, Jamison, Sabuncu, & Kuceyeski, 2021), ages (Gu et al., 2021; Hagmann et al.,
2010), cognitive tasks (Griffa et al., 2022), brain regions (Gu et al., 2021; Preti & Van De Ville,
2019), and in brain-related disorders (Cao et al., 2020; Hua et al., 2020; Liu et al., 2022; Tay
et al., 2023; Zarkali et al., 2021).

Nevertheless, the relationship between SC and FC does not follow a simple mapping at the
level of the single link. For instance, two regions can be functionally connected without a
direct structural connection, and SC evolves over much longer time scales than FC (Batista-
García-Ramó & Fernández-Verdecia, 2018). For this reason, the SC-FC correspondence has
been investigated at the module or aggregate level, exploring the full set of nested partitions
within a hierarchical tree, revealing that the structural and functional connectivities share a
common modular architecture (Betzel et al., 2019; Diez et al., 2015; Jimenez-Marin et al.,
2024; Puxeddu, Faskowitz, Sporns, Astolfi, & Betzel, 2022; Sporns & Betzel, 2016).

FC is usually estimated as the correlation matrix between pairs of time series of activity
(usually blood oxygen level-dependent [BOLD] functional magnetic resonance imaging [fMRI]
signals at rest) from different brain areas and, less commonly, as the partial correlation (PC;
Fransson & Marrelec, 2008; Huang et al., 2010; Peterson, Sanchez-Romero, Mill, & Cole,
2023; Rahim, Thirion, & Varoquaux, 2019).

Several advantages of PC over correlation have been shown. For instance, PC represents a
more direct model for brain connectivity, since, under a linear (Gaussian) approximation, it

Functional connectivity (FC):
The generic network of activity
patterns between brain areas.

Structural connectivity (SC):
The generic network of anatomical
connections between brain areas.

Network Neuroscience 2

Partial correlation for mapping functional-structural correspondence

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn.a.22/2530747/netn.a.22.pdf by guest on 20 August 2025



accounts for direct dependencies between brain areas only (Liégeois, Santos, Matta, Van De
Ville, & Sayed, 2020; Marrelec et al., 2006; Ryali, Chen, Supekar, & Menon, 2012; Salvador,
Suckling, Schwarzbauer, & Bullmore, 2005; Varoquaux, 2019) and, accordingly, it provides a
higher link-wise match between SC and FC (Liégeois et al., 2020; see also the Supporting Infor-
mation for a more detailed description of the relation between structure and function in the
linear approximation). Moreover, PC-based FC exhibits reduced variance across subjects
(Brier, Mitra, McCarthy, Ances, & Snyder, 2015) and yields higher prediction scores for certain
individual-level measures (Pervaiz, Vidaurre, Woolrich, & Smith, 2020; Rahim et al., 2019).

However, the use of the PC is limited by the low accuracy of its statistical estimation in the
small-sample limit, that is, when the time series are short relative to the number of brain
regions considered, which is often the case with BOLD fMRI time series (Ibáñez-Berganza,
Lucibello, Santucci, Gili, & Gabrielli, 2023; Liégeois et al., 2020; Ryali et al., 2012; Varoquaux,
2019). To address this issue, various regularization methods have been proposed within net-
work neuroscience for accurate inference of the correlation and precision matrices (Brier et al.,
2015; Huang et al., 2010; Rahim et al., 2019; Ryali et al., 2012), many of which introduce ‘1
or ‘2 penalty terms. The ‘1 penalty leads to sparse estimators, such as the Graphical Lasso
(GLASSO; Friedman, Hastie, & Tibshirani, 2008), while the penalty ‘2 results in linear shrink-
age (LS) estimators, where matrices are not intended to be sparsified (Ledoit & Wolf, 2004;
Varoquaux, 2019; Varoquaux & Craddock, 2013). The GLASSO is, in general, a good
approach for structure recovery (Huang et al., 2009), but it may not yield stable covariance
coefficients. Moreover, its costly optimization is not suited for large-scale datasets. On the
other hand, the LS estimator is simple and fast to compute. It yields biased estimates that
are more stable than the empirical covariance and is often recommended for FC (Rahim et al.,
2019).

These methods have been compared in terms of nonimaging features prediction power
(Pervaiz et al., 2020; Peterson et al., 2023; Rahim et al., 2019), stability across scans (Mejia
et al., 2018; Peterson et al., 2023; Rahim et al., 2019), retrieval of synthetic data generative
models (Peterson et al., 2023; Ryali et al., 2012; Smith et al., 2011), and measures such as test-
set (or out-of-sample) likelihood (Ibáñez-Berganza et al., 2023; Varoquaux, Gramfort, Poline, &
Thirion, 2010), suggesting that the choice between sparse or shrinkage estimators may depend
on the intended use and interpretation of FC.

Indeed, the dependence of the SFC on the FC inference method, including PC, has already
been investigated (Liégeois et al., 2020; Peterson et al., 2023), but only at the single links level,
while it has been suggested that the SFC may be rooted in a common hierarchical modular
organization rather than in a correspondence between the single connections (Diez et al.,
2015; Jimenez-Marin et al., 2024; Puxeddu et al., 2022; Sporns & Betzel, 2016).

Here, we go beyond both approaches by exploring the correspondence between SC and
FC at the hierarchical aggregated level, inferring FC from both correlation and PC matrices.
Specifically, we show that (a) FC, when estimated from the regularized PC, exhibits greater
similarity to SC in terms of modular structure, both at the subject and at the population level,
and a smaller variance across subjects; (b) regularization is crucial to our results, which are
robust with respect to the regularization methods most widely used in neuroscience; (c) spar-
sity is fundamental for the emergence of the FC’s hierarchical modular structure; (d) the SC-
FC similarity reaches a maximum in correspondence with a specific partition of FC; and (e)
the partition’s modules are characterized by neurogenetic expression present in major dis-
eases. These findings advance our understanding of SFC in the brain, indicating that the use
of regularized PC matrices may provide a more accurate and stable representation of SC,
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enhancing the potential for clinical applications and insights into neurogenetic disease
mechanisms.

RESULTS

Connectivity Matrices and Cross-Modularity for Assessing the SC-FC Correspondence

SC graph GS and FC graph GF (or connectomes) were obtained from data previously published
in Jimenez-Marin et al. (2024) and available at Jimenez-Marin et al. (2023) for a population of
P = 136 healthy participants and N = 183 regions of interest (ROIs; see Figure 1 for a scheme of
the methodological pipeline). In particular, we used diffusion-weighted imaging (DWI) matri-
ces to extract a unique estimate of SC for each subject. To estimate FC, we used a resting-state
(rs) fMRI signal of T = 652 time steps (Figure 1A). In particular, we use two differentiated strat-

egies to estimate FC: from the correlation C and from the PCeJmatrices, respectively. The latter

is defined aseJij ¼ Jijffiffiffiffiffiffi
Jii Jjj

p , or the standardized version of the precision matrix J = C−1. In the fMRI

time series, cast as a N × T matrix X, the ratio q = N/T is not negligible, so regularization
methods are needed to accurately estimate C (and even more its inverse J; Ibáñez-Berganza

et al., 2023) beyond the sample correlation matrix E ¼ XX⊺

T (the time series will be assumed

from now on to be demeaned and standardized). Here, we estimated such regularized corre-

lation matrix Cμ and regularized PC matrixeJμ according to different regularization algorithms μ
(Figure 1B and the Materials and Methods section).

SC graph GS :
The graph representing SC, here built
from thresholded DWI data.

FC graph GF :
The graph representing FC, here
inferred both as (regularized and
thresholded) correlation and partial
correlation matrices, from rs-fMRI data.

Precision matrix J:
The matrix inverse of the (possibly
regularized) correlation matrix: J = C−1.

Sample correlation matrix E:
The unbiased (“raw”) estimator of the
true correlation matrix, computed
from the standardized N × T data
matrix X as E = XXT/T.

Figure 1. Methodological sketch and pipeline. (A) Preprocessed data of 136 healthy subjects have been obtained from the open dataset
(Jimenez-Marin et al., 2024) at Jimenez-Marin et al. (2023). Data include, for each subject, a DWI matrix of N = 183 brain regions, and
rs-fMRI BOLD time series of N brain regions and T = 652 time steps. (B) Each subject FC is estimated as (a) the regularized correlation matrix
Cμ(αL) of the time series, where μ stands for the specific regularization method, and αL for the parameter that maximizes the validation-set
likelihood, given the method; or (b) as the regularized partial correlation matrixeJ, the standardized version of regularized precision matrix (the
correlation inverse) Jμ αLð Þ ¼ C−1

μ αLð Þ. (C) We cut both functional and structural matrices, taken in absolute value, at the percolation threshold.
These thresholded matrices are the adjacency matrices of the sparse graphs GF and GS. (D) We computed the hierarchical clustering of GF and
GS, separately. This computation returns two sets of nested partitions PGF mð Þ and PGS mð Þ, inmmodules, for m = 2, …, N. Subsequently, for each
couple of partitions PGF mð Þ and PGS mð Þ, we computed their individual quality (QGF mð Þ and QGS mð Þ) and their agreement νGF ;GS mð Þ. (E) These
three measures allow us to compute the cross-modularity χGF ;GS

mð Þ ¼ QGF mð Þ⋅QGS mð Þ⋅νGF ;GS mð Þ� �1=3
, whose maximum can be used to iden-

tify a meaningful partition of the population FC. (F) We made use of transcriptomic data extracted from Jimenez-Marin et al. (2024) and data
relative to the association between genes and a set of diseases extracted from Zeighami et al. (2023) to (G) evaluate the association between
each of the modules of the retrieved FC partition and these diseases.

Regularized correlation matrix Cμ(α):
A denoised estimate of the true
correlation matrix, using method μ
and tuning parameter α.
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Next, we construct three connectivity matrices M for each subject, one for SC (containing

the DWI data) and two for FC:Mij = j Cijj andMij ¼ jeJij j, with j ⋅ j indicating the absolute value.
Afterward, we cut the connectivity matrices at the so-called percolation threshold (Nicolini,
Forcellini, Minati, & Bifone, 2020). This procedure prescribes setting to zero all matrix elements
smaller than the cutoff that would break the corresponding graph in two or more connected
components, so that the thresholded graphs’ density depends on their topological properties
(also see the Materials and Methods section). Therefore, interpreting these thresholded matri-
ces as adjacency matrices, SC and FC graphs were generated (Figure 1C). In the following, we
will indicate the structural connectivity graph as GS and the FC graph as GF , possibly distin-

guishing between the graphs inferred from C or eJ as GF Cð Þ and GF ðeJÞ, respectively. If not oth-
erwise specified, we assume all graphs to be at the percolation threshold. Each pair of SC and
FC graphs was then compared at the module level. This was done for each subject in the
dataset, and at the population level as well. To this aim, we performed the hierarchical clus-
tering of both GS and GF separately. This procedure returns two independent sets of nested
partitions into m modules, PGS mð Þf gm¼2;…;N and PGF mð Þf gm¼2;…;N . For all values of m = 2,

…, N, we computed the following: (a) the quality QGS mð Þ of PGS mð Þ and the quality QGF mð Þ
of PGF mð Þ, in terms of Newman’s modularity (Newman, 2006), and (b) the agreement,

νGF ;GS mð Þ, between the pair of partitions PGS mð Þ and PGF mð Þ, in terms of adjusted normalized

mutual information (NMI; Xuan Vinh, Epps, & Bailey, 2010). Notice that, here, we did not
maximize Q but simply calculated it at all levels in the hierarchical clustering (Figure 1D).
These three quantities allowed us to compute the cross-modularity,

χGF ;GS
mð Þ ¼ QGF mð Þ ⋅ QGS mð Þ ⋅ νGF ;GS mð Þ� �1=3

; (1)

which is a slightly different measure from the original one defined in Diez et al. (2015). The
aim of cross-modularity is to quantify the reciprocal similarity of a couple of graphs in terms of
their hierarchical modular structure while also taking into account the quality of their individ-
ual partitions. This is done for all number of modules, so that a complete comparison of the
whole hierarchy of nested partitions of the two graphs is provided. The range of χ(m) follows
straightforwardly from those of the Newman modularity and NMI: They both reach a maxi-
mum of 1 for a high-quality partition and a perfect match and are expected to vanish in case of
random and unrelated partitions (Hagberg, Schult, & Swart, 2008; Pedregosa et al., 2011;
Romano, Xuan Vinh, Bailey, & Verspoor, 2016; Van Mieghem, Ge, Schumm, Trajanovski, &
Wang, 2010; Xuan Vinh et al., 2010). In this work, cross-modularity is always used to compare
GS with an estimate of GF ; therefore, when referring, for the sake of shortness, to the “cross-
modularity of GF ,” we will always mean the cross-modularity of between GF and GS in
Equation 1.

The cross-modularity χ(m) was then used for (a) comparing the effects of estimating GF

through C or through eJ, as well as the impact of regularization, in terms of similarity between
the hierarchical nested structures of GF and GS at both the individual and population levels and
(b) extracting a meaningful partition of our estimate of population-level FC graph (Figure 1E).
Finally, we made use of transcriptomic data (Figure 1F; Jimenez-Marin et al., 2024) to better
motivate the biological interpretation of the different estimated partitions (Figure 1G).

PC Enhances the FC-SC Correspondence in the Human Brain

As represented in Figure 2, GF is more similar to GS when inferred from regularized PC than
when inferred from regularized correlation, in terms of hierarchical modularity. This result is

Regularized partial correlation (PC)
matrix J~�(α):
The normalized version of the
precision matrix. In a Gaussian
approximation, it accounts for direct
dependencies only.
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robust across all regularization strategies that are most common in neuroscience. More in

detail, with reference to Figure 2A, we found that the cross-modularity χ(m) of GF ðeJÞwas much
lower than the one of GF Cð Þ when no regularization was applied. However, when regulariza-

tion was applied, GF ðeJÞ reached higher values of χ(m) for most regularization methods. On the
other hand, the cross-modularity of GF Cð Þ did not exhibit significantly different variations after

regularization (as expected). Moreover, GF ðeJÞ exhibited a significantly higher χ(m) than GF Cð Þ,
for methods such as identity shrinkage (IS), group shrinkage (GS), GLASSO, and cautious prin-
cipal component analysis (cautPCA). In addition, FC inferred from PC exhibited a smaller
across-subject variance. A similar trend was found measuring the spectral distance (Figure 2B)
between each couple of subjects’ matrices (see the Materials and Methods section). We addi-

tionally observed that the cross-modularity of GF ðeJÞ is higher when regularizing with the
method cautPCA (Ibáñez-Berganza et al., 2023) than when regularizing with PCA (alterna-
tively known as eigenvalue clipping; Bun, Bouchaud, & Potters, 2017), of which cautPCA is
a variant.

Figure 2. Partial correlation enhances the FC-SC correspondence in the human brain. Panels A and B show how two relevant measures such
as (A) the cross-modularity and (B) the across-subject variance, measured in terms of spectral distance, change depending on whether GF is
estimated as C (red) or eJ (blue), and the relevance of using a regularization method (“raw” stands for no regularization). More in detail, the
boxplots represent the across-subject distribution of (A) maxm χ(m) and (B) the spectral distances between each couple of subjects’ ds,s0. Most
regularization strategies (denoted with three asterisks) significantly enhance the cross-modularity of GF ðeJÞ. Moreover, the subjects’ GF ðeJÞ
exhibit a significant and systematic lower spectral distance, with respect to GF Cð Þ, similarly to GS , that we have reported in green for com-
parison. We have assessed such significance by performing a Mann–Whitney U rank test of the null hypothesis that the distributions underlying
the pair of samples (relative to C and eJ) are the same. More in detail, in a the methods marked by the asterisks are associated with a p value
smaller than 10−3, and the alternative hypothesis is that the distribution underlying the sample corresponding to C is stochastically less than the
distribution underlying the sample corresponding to eJ. On the other hand, in b all methods are associated with a vanishing p value, and the
alternative hypothesis is that the distribution underlying the sample corresponding to C is stochastically greater than the distribution underlying
the sample corresponding toeJ. The cross-modularity curves of GF Cð Þ and GF ðeJÞ, regularized with GS, are shown in (C), both at the subject (the
solid lines are the across-subject means and the shaded areas their standard deviation) and at the population level (square solid lines). The
curves of GF ðeJÞ are significantly higher than those of GF Cð Þ for almost all values of m and are characterized by a lower variance. The gray
vertical line indicates the number of modules m = 12 that maximizes the cross-modularity of most subjects. We reported in (D) the partition of
the population GF ðeJÞ into m modules, drawing the ROIs belonging to each module as dots in the brain glass plots, colored according to the
anatomical regions.
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Cross-Modularity Curves Identify Representative Partitions

The complete cross-modularity curves for GF ðeJÞ and GF Cð Þ, both for individual subjects and
at the population level, are shown in Figure 2C. These curves are obtained using the GS
regularization method, as it provides the highest PC cross-modularity, but we found quali-
tatively consistent results across regularization methods. We found that, in general, at both

the individual subjects and population levels, for GF inferred from both regularized C and eJ,
and across all regularization methods, the cross-modularity χ(m) increases rapidly with the
number of modules m when m is low. It exhibits a soft maximum when m is between 10
and 20 (though its exact position may slightly vary depending on the specific method used
for inferring FC) and then decreases slowly as m increases. We stress that, since the cross-
modularity is the product of two quantities that are expected to vanish in unstructured
(Hagberg et al., 2008; Van Mieghem et al., 2010) or unrelated graphs (Pedregosa et al.,
2011; Romano et al., 2016), the fact that it presents a maximum is nontrivial, and the
number of modules providing it can be used as a criterion for selecting the number of
modules to partition the FC. Accordingly, Figure 2D presents the hierarchical clustering par-

tition of GF ðeJÞ into 12 modules (the median across-subject argument of maxm χ(m)) of the

population GF ðeJÞ.
See the Supporting Information S1 for further details regarding the FC-SC correspondence at

the population level (Supporting Information Figure S3), and the overlap between each mod-
ule and the Desikan-Killiany structural areas and the Yeo functional networks (Supporting
Information Figure S4C–D).

Robustness of the Enhanced FC-SC Similarity With Respect to the Regularization Parameters

In this article, we understand regularization in the sense of statistical inference: the regularized
estimator leads to a higher out-of-sample data likelihood at the expense of a lower training-set
likelihood (Ibáñez-Berganza et al., 2023). The regularized estimator presents, in other words, a
lower variance error with respect to the maximum likelihood estimator, at the expense of a
higher bias error (and a lower bias + variance error). We now present an assessment of the
robustness of our results with respect to the value of the regularization parameter, generically
referred to as α for all the regularization methods. The regularization parameter is such that, for
all the methods except optimally rotationally invariant estimator (ORIE), α = 0 represents no
regularization (the maximum likelihood estimator), while α = 1 represents the completely
biased estimator. Given a subject time series X, we fix the value of αL as the one that maxi-
mizes the validation-set likelihood Xval, given the method (see the Materials and Methods
section).

We have already seen (see Figure 2A) that regularization is crucial for our estimation of
PC-based FC to exhibit an enhanced similarity to SC. We now show that, actually, the
enhancement of FC-SC cross-modularity induced by statistical regularization is very close
to its maximum possible value, understood as the maximum value of the FC-SC cross-
modularity over all values of α. Let us define αχ as the value of the regularization parameter
that maximizes the (PC-based) FC-SC cross-modularity (given a regularization method). We
observe (see Figure 3), that the effect of statistical regularization (i.e., with parameter αL) in
terms of FC-SC similarity is, rather remarkably, very similar to the effect of regularization
methods with parameter αχ, despite the statistical regularization does not use any information
about the SC matrix. The histograms for both parameters αχ and αL are, however, clearly dif-
ferent (see Figure 3). We conclude that regularization is crucial to observe the enhancement of
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FC-SC similarity, and that such enhancement is, at the same time, robust with respect to the
regularization parameter α, as far as α is of the same order of αL (not orders of magnitude
lower). Remarkably, these results remain qualitatively identical in a backup analysis with a
supplementary extra dataset (see Supporting Information Figure S2).

Thresholding Is Crucial for the PC FC-SC Correspondence

We observed that a high similarity between GS and GF ðeJÞ only emerged provided that the latter
was inferred from sparse PC matrices (see Figure 4A). It is noteworthy that thresholding disrupts
the positive definiteness of the matrices, rendering the thresholded connectivity matrices non-
compliant with the mathematical definition of correlation matrices. Consequently, some
researchers, including Varoquaux (2019), advocate against the thresholding process. Instead,
they recommend the sparsification induced by GLASSO to achieve sparsity when needed.

Indeed, we have confirmed that eJGLASSO is a sparse matrix and that further thresholdingeJGLASSO up to the percolation threshold only slightly enhances the cross-modularity of

Figure 3. Robustness of the enhanced FC-SC similarity with respect to the regularization parameters, for different regularization methods
(Rows A–E). First column: across-subjects distribution of the regularization parameter αL that maximizes the validation-set log likelihood (light
blue) and the parameter αχGF ð J~Þ

that maximizes the peak of the cross-modularity (χ = maxm χ(m)) of eJμ αð Þ (dark blue), given the regularization
method μ. Although the distributions of αL and αχGF ð J~Þ

are different, they produce similar χ curves: the second column represents
the cross-modularity curves of GF ðeJ αLð ÞÞ (light blue) and of GF ðeJ αχ

� �Þ (dark blue), where the dotted lines are the across-subject means and the
shaded areas represent the plus/minus 1 SD distance from the mean.
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GF ðeJGLASSO Þ (see Figure 4B). The same does not apply to CGLASSO, which is a dense matrix
(Figure 4C).

Relevance of FC Graphs’ Density

It is well known that a graph’s density is very relevant for many graph properties (van Wijk,
Stam, & Daffertshofer, 2010). Therefore, in this section, we address the question of whether the
higher FC-SC match in terms of PCs is attributable to the mere fact that the PC-based FC is
sparser.

To answer this question, we estimated the FC-SC match in terms of cross-modularity, but as
for fixed values of the FC network density ρ (tuned through thresholding), equal for correlation-

and PC-based FC (while all SC graphs are cut at percolation). If G ρð Þ
F ðeJÞ exhibits a significantly

Figure 4. Relevance of thresholding. Subfigures A.1 and A.2 report the dependency of cross-modularity on the FC density ρ: the boxplots in
A.2 represent the maximum (across modules) FC-SC cross-modularity, for the partial correlation–based FC G ρð Þ

F ðeJÞ (blue) and the correlation-
based FC G ρð Þ

F Cð Þ (red), regularized with GS and cut at density ρ (while the SC graph is always cut at percolation). As a comparison, we show in
A.1 (“perc”) the values that are obtained if all graphs are cut at the percolation threshold (the same as in Figure 2). We also report the average
across subjects, plus/minus 1 SD, of the percolation density of: structural connectivity, PC-based FC, correlation-based FC (green, blue, and red
vertical thick bars, respectively). These trends are robust across regularization methods. Anyway, notice that GLASSO returns a PC matrix that
is much sparser than the corresponding correlation matrix (as shown in C.1). This is why in this case, if no threshold is applied, PC provides
significantly higher cross-modularity curves with respect to the correlation: (B) the cross-modularity curves for C (red) andeJ (blue), regularized
with GLASSO, without any threshold (darker curves) and with percolation threshold (lighter curves) as a comparison. The boxplots C.1 and C.2
show the across-subject distribution of the single subjects’ densities ρ Gð Þ of the SC (green) and FC graphs obtained from regularized C (red) andeJ (blue) matrices, without (C.1) and with (C.2) the cut at the percolation threshold, for different regularization strategies (“Raw” stands for “no
regularization”). We observe how only the partial correlation regularized with GLASSO provides an FC graph that is already sparse (note that
the symbols highlighted in yellow in Subfigure C.1 appearing as horizontal lines are, in fact, zero-error boxplots).
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higher match than G ρð Þ
F Cð Þ in a wide range of common values of ρ, we can conclude that the

density is not the determinant factor of the phenomenon that we describe.

The results of this analysis are shown in Figure 4A.2, reporting the maximum (across mod-
ules) of the FC-SC modularity for different densities (in abscissa) of the FC graphs constructed

from the regularized C and eJ matrices. For each subject in Figure 4A.2, we regularize the C, eJ
matrices with the GS method; we then construct the associated graphs’ adjacency matrices,
and threshold them up to the x-axis density; we finally compute the across-subjects values of
χ, reported in the box plots. The average percolation density, plus and minus 1 SD, is repre-
sented in the same figure, as the three vertical bars colored in green, blue, and red for the SC,
the PC-based FC and correlation-based FC, respectively. For ease of comparison, we also
include in Figure 4A.1 the cross-modularity for the case in which all the matrices are cut at

Figure 5. Transcriptomic expression of major brain-related disorders across different modules. For the modules of the same partition of the
population GF ðeJÞ illustrated in Figure 2D, we show (A) the across-modules Z score of the median representation of the genes associated with
each disorder. Modules with absolute values higher than 2 (meaning that the disease is significantly over or underrepresented) are denoted by a
white asterisk. Histogram B contains the persistence of the partition’s modules across bootstrap samplings of the dataset’s subjects; the result is
expressed in terms of the average match (NMI) of each module with its most similar counterpart in each sampling’s partition. Subfigure C
shows the few modules significantly associated with three or more diseases. Notice the fundamental role of module M12, which is notably
present across all samplings.
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the so-called (subject-dependent) percolation threshold (labeled “perc”). On the one hand, we
observe that sparser graphs, whose density ρ is more similar is to the SC density ρχ, tend to

present higher FC-SC match. On the other hand, we observe that, interestingly, the eJ-based
match is significantly higher than the C-based match, for a wide range of sufficiently low
values of ρ. This implies that we cannot simply attribute the higher PC-based FC-SC match
to the fact that PC-based FC is sparser (hence, more similar in density to the SC density).
See the Supporting Information for further details on the impact of graph density.

Partition of the Population FC and Neurogenetic Interpretation

Finally, we characterized the modules of the population GF ðeJÞ partition shown in Figure 2 in
terms of their participation in major brain-related disorders. In other words, we assessed
whether some modules exhibit a significantly lower or higher expression of genes associated
with a particular disease. To this end, we computed the across-modules Z score of the median
transcriptomic expression values for sets of genes associated with each brain-related disorder
across the ROIs in each module, following a procedure similar to that described in Jimenez-
Marin et al. (2024). The results, shown in Figure 5, reveal that module M12, corresponding to
subcortical regions, is highly relevant for most disorders. It is positively associated with tumor-
related and neurodegenerative diseases and negatively associated with psychiatric, substance
abuse, and movement-related ones. We additionally checked the stability of the population

GF ðeJÞ partition across 100 bootstrap samplings of the dataset. Indeed, we found an overall
average NMI similarity score of 0.86 out of 1 between the main partition and those com-
puted at each sampling (see the Materials and Methods section). We also found that some
modules are particularly persistent: notably, module M12 appears identical in all partitions
(Figure 5B).

DISCUSSION

In the study of brain SFC, FC inferred from PC matrices shows a higher correspondence with
SC, even though most previous studies have only evaluated this correspondence at the single-
link level. In this work, we compared different methods to infer brain FC from resting-state
BOLD time series. These methods include estimating FC from the correlation (C) or the PCs

(eJ) of the time series, inferred through a regularization algorithm, and further enhancing FC
graph sparsity by setting the smallest (in absolute value) matrix elements to zero, up to the
so-called percolation threshold.

In general, and in line with other works (Liégeois et al., 2020; Varoquaux, 2019), we found
that inferring the FC graph from regularized PC, rather than from correlation, enhances its spar-
sity and its similarity to the SC graph. While this is expected in the Gaussian, time-uncorrelated
approximation, where the PC represents the direct interactions between brain areas (also see
the Supporting Information), this result is by no means obvious in fMRI data, for several rea-
sons. On the one hand, one expects fMRI data to be nonlinear and time-correlated and, on the
other hand, the estimations of the PC-based FC are strongly influenced by the data finiteness
and temporal correlations. Our article follows the above-cited studies, providing evidence of a
closer FC-SC match in terms of PCs. Furthermore, we step further, by assessing: (a) the impor-
tance of a noise-cleaning or regularization method; (b) the impact of different regularization
methods; and (c) the behavior of a different metrics that accounts for the similarity between FC
and SC at the hierarchical-modular level (beyond the element-wise covariance between the
two matrices).
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The utility of having a reliable, statistically significant estimator of connectivity, similar to
SC, from BOLD time series has already been pointed out, at least in the context of compu-
tational approaches to brain function. There, the brain structure is often represented in terms
of latent, interpretable, inferred parameters θ that are eventually used as an input for machine
learning classifiers or to detect differences between different groups of subjects. Such a rep-
resentation is called generative embedding (Friston, Stephan, Montague, & Dolan, 2014;
Frässle et al., 2018; Huys, Maia, & Frank, 2016; Montague, Dolan, Friston, & Dayan,
2012; Stephan & Mathys, 2014). While a standard inference method of structural parameters
θ from the imaging data is dynamic causal modeling (DCM; Frässle et al., 2021; Rigoux &
Daunizeau, 2015), a simpler alternative to DCM is the linear scheme addressed here. Albeit
linear models are much simpler and less realistic than DCM, their inference could be more
statistically robust for a large number of brain areas and low number of time points, as is
typical of fMRI time series.

As previously noted, retrieving FC from time series data requires statistical regularization.
Here, we have addressed the robustness of the FC-SC match with respect to the statistical reg-
ularization method (Figure 2), as well as with respect to the value regularization parameter,
given the method. Rather interestingly, we find that the statistical regularization procedure,
which has no information about SC, already brings the ensuing FC networks as similar to
SC as those obtained by tuning the regularization parameter to the value αχ that maximizes
the FC-SC match at the level of the single subject (Figure 3).

In this work, we observed that working with sparse graphs is crucial for observing a high
degree of cross-modularity. This is why we thresholded all graphs at the so-called percolation
threshold (also see the Materials and Methods section) that depends on the graph topology, so
that no arbitrary choice regarding the final density has to be made. Some authors have argued
that thresholding is not a principled approach as it results in a nonpositive definite matrix,
which does not represent a valid covariance matrix and may not be invertible, thus preventing
association with a Gaussian likelihood (Varoquaux, 2019). Consequently, they recommend
using methods such as GLASSO to recover the adjacency matrix of GF as a sparse PC (a math-
ematically valid correlation matrix) whenever sparsity is required. Indeed, we confirmed that
the GLASSO regularization, tuned by maximizing the test-set likelihood, produces a sparse PC
matrix, whose cross-modularity is only slightly smaller than the one obtained by further thresh-
olding the PC matrix, up to percolation value (Figure 4).

Given that the graphs’ density is highly relevant to the cross-modularity (as well as to many
other graph properties; van Wijk et al., 2010), we analyzed this dependency (see Figure 4A) in

order to rule out the hypothesis that the enhanced SC-FC match of GF ðeJÞ is only due to its
higher sparsity, with respect to GF Cð Þ. Our analysis reveals that, as a matter of fact, the higher
SC-FC match for PCs occurs for a wide range of values of the density of FC connectivity matri-

ces and is not simply induced by the relatively low density of GF ðeJÞ. Figure 4A also tells us that
the lower the density, the higher the FC-SC match. Since the density is lowered by increasing
the threshold σ below which we cut away the elements of the connectivity matrix, this fact
suggest that higher similarity between FC and SC is obtained with the stronger links of the FC
matrices.

Finally, our neurogenetics association analysis shows that Module 12, anatomically com-
prising the basal ganglia and thalamus—involved in motor control, cognition, and emotional
regulation—has a more dominant implication across different disease groups (Figure 5).
Increasing evidence suggests that gene expression patterns within the basal ganglia-
thalamocortical circuitry overlap significantly with genetic profiles associated with various
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neuropsychiatric conditions, as well as mood and compulsive disorders. In depression, dys-
functions in the striatum and thalamus correlate with anhedonia and impaired reward processing,
with genetic studies highlighting disrupted expression of serotonin transporters and dopami-
nergic genes (Belujon & Grace, 2017). Similarly, obsessive-compulsive disorder is associated
with hyperactive cortico-striato-thalamic loops, where altered expression of glutamatergic and
serotonergic genes plays a role (Grünblatt, Hauser, & Walitza, 2014). In bipolar disorder, irreg-
ularities in the basal ganglia and thalamus contribute to emotional dysregulation (Kato, 2019).
In autism spectrum disorders, disruptions in synaptic excitation-inhibition imbalance and neu-
rodevelopmental gene expression in these regions contribute to sensory-motor dysfunction
and social impairment (Nelson & Valakh, 2015; Rasero et al., 2023). Our neurogenetic results
also show that both the basal ganglia and thalamus are involved in seizure modulation.
Indeed, the thalamus, particularly the centromedian nucleus, plays a central role in seizure
propagation, with gene expression studies implicating mutations in SCN1A and GABRG2 in
epileptogenesis (Lindquist, Timbie, Voskobiynyk, & Paz, 2023). On the other hand, the basal
ganglia, particularly the substantia nigra pars reticulata, is involved in seizure suppression, and
altered dopamine receptor gene expression has been observed in epilepsy models (Vuong &
Devergnas, 2018). In Alzheimer’s disease, the thalamus and basal ganglia exhibit significant
atrophy, and recent transcriptomic analyses have shown that genes such as APOE, MAPT, and
PSEN1 are differentially expressed in these regions (DeTure & Dickson, 2019). Huntington’s
disease, which primarily affects the striatum, is characterized by mutant HTT gene expression,
leading to neuronal loss and network dysfunction between the basal ganglia and thalamus
(Gatto et al., 2020).

MATERIALS AND METHODS

Data

Connectivity data, downloaded from the open dataset (Jimenez-Marin et al., 2023), include
the preprocessed resting-state fMRI (rs-fMRI) hemodynamic BOLD time series and the DWI
structural connectivity matrices of 136 healthy participants, 98 of them males, aged between
20 and 30 years old, already parceled in 183 ROIs. The rs time series include 652 time steps.
Details about the preprocessing and the parcellation, from raw data of the multimodal data-
set Max Planck Institut Leipzig Mind-Brain–Body Dataset commonly referred to as LEMON
(Babayan et al., 2019), can be found in Jimenez-Marin et al. (2024).

Transcriptomic expression data, containing the expression of genes within each ROI, were
also obtained from the dataset (Jimenez-Marin et al., 2024), and they are the result of the pre-
processing, using the abagen tool (Markello et al., 2021), of the open data from the Allen
Human Brain Atlas (Hawrylycz et al., 2012). In addition, we obtained the data relative to
the association between genes and diseases from the archive associated with Zeighami et al.
(2023).

From Data to Brain Functional and Structural Graphs

The SC and FC graphs were recovered from the respective connectivity matrices, interpreted as
adjacency matrices: each matrix entrance can be read as the strength of the connection (link
weight) between the corresponding couple of ROIs (nodes). For each subject s, we obtained
the SC directly from the structural data, while we computed multiple estimates of the FC’s
connectivity matrix from the rs BOLD time series: from their regularized correlation matrix

Cs
μ αLð Þ and from its inverse Jsμ αLð Þ ≡ Cs

μ αLð Þ−1, whose elements were next normalized as eJsμ;ij ¼
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Jsμ;ijffiffiffiffiffiffiffiffiffi
Jsμ;ii J

s
μ;jj

p (PC), for each of the regularization methods μ that we took into account (see next sec-

tion); the regularization parameter αL maximes the likelihood of the validation set, with respect
to the method. The “raw,” not regularized, correlation matrix is the sample covariance of the
fMRI time series; it corresponds to the sample correlation matrix when the time series are
demeaned and standardized (null temporal averages and unit standard deviation) as we
assume the data to be. Since there is no straightforward interpretation for negative link weights,

the adjacency matrices M of the FC connectivity graphs were taken as the C, eJ matrices in

absolute value. More specifically, Mij ¼ jCμ αLð ÞÞij j; jðeJμ αLð ÞÞij j, for the correlation-based and

for the PC-based FC networks (i.e., GF ðCs
μ αLð ÞÞ and GF ðeJsμ αLð ÞÞ), respectively.

Next, we cut both structural and functional matrices M at the percolation threshold (for
more detail, see the Percolation Threshold section). In the preliminary analysis, we verified
that the way negative values are treated does not significantly affect the results since most
of the negative elements are small in absolute value and are consequently removed in the
thresholding step. At last, the thresholded matrices M are taken as the adjacency matrices
of the SC and FC graphs of each subject s. At the population level, we defined the population
connectivity matrix as the across-subject median of the single-subject connectivity matrices.

Regularization Methods

Given the single-subject time series X (a N × T real matrix), demeaned and standardized, if T is

finite or q = N/T does not vanish, the sample correlation matrix E ¼ XX⊺

T and, even more, its

inverse J = E−1 are not good estimators of the true correlation and precision matrices (Bun et al.,
2017; Ibáñez-Berganza et al., 2023; Varoquaux & Craddock, 2013). Regularizing, or noise-
cleaning, consists of proposing a matrix that is as similar as possible to the true correlation
matrix (in particular, more than E).

The regularization algorithms that we took into account in this work (far from being a
complete list of all the methods present in literature; Bun et al., 2017), include methods from
the two most common approaches in neuroscience (i.e., the linear shrinkage approach, rep-
resented by the IS and GS, and the sparse estimator approach, such as GLASSO; Varoquaux,
2019), plus two algorithms that follow a principal component approach. All these algorithms
were systematically evaluated in Ibáñez-Berganza et al. (2023) on rs-fMRI BOLD signal and
synthetic data, in terms of scores such as the element-wise distance d(J, Jv) between the
inferred precision J and the true precision Jv, and the test-set likelihood. Most of the regu-
larization algorithms consist in regularizing the spectrum Λ of E while keeping the eigenvec-
tors U unchanged (based on the assumption of no prior knowledge of the eigenvectors’
structure) so that the correlation matrix regularized with method μ has the general form
Cμ(α) = UΛ(α)U⊺:

(a, b) LS (Ledoit & Wolf, 2004b) consists in a convex combination CLS(a) = (1 − a)E + aT
between the sample matrix E and a target matrix T (independent of the data), such as the iden-
tity matrix IN (in which case we dub the method IS), or the across-subject average of the sam-
ple correlation matrix hEi (we call this method GS). The linear shrinkage can have different
interpretations. For example, it can be seen as a trade off between bias and variance, as a
shrinkage of the eigenvalues toward their grand mean (Ledoit & Wolf, 2004b), or also as an
optimal Bayes estimator in the context of the Bayesian random matrix theory, choosing the
minimum mean squared error as loss function and assuming a Gaussian distribution for the
data and an Inverse-Wishart as prior distribution for the correlation matrix (Bun et al., 2017).
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(c) PCA, also known as eigenvalues clipping (Bun et al., 2017), is a method that consists in

considering as significant only the p largest eigenvalues of E: λ̂i ¼ λi if i ≤ p, else λ̂i ¼
P

i>p
λi

N−p .

(d) cautPCA is a simple variant of PCA that was firstly introduced in (Ibáñez-Berganza et al.,
2023), where it proved to slightly outperform PCA. In this case, the spectrum is first changed as
λi ¼ λp∀i ≥ p and later rescaled such that tr[C] = N.

(e) GLASSO, in this case, C and J, are computed by maximization of the log likelihood minus
a ‘1 norm penalty term: JGLASSO(a) = arg maxJ {lnN(X|J−1) − a�i<j|Jij|} (Friedman et al., 2008).

(f ) ORIE, first proposed in Ledoit and Péché (2011) and later extended in Bun, Allez,
Bouchaud, and Potters (2016), is a method that consists of correcting the eigenvalues of

the sample estimator E as λ0k ¼ λk
1−qþqzk s zkð Þj j2 where s zð Þ ¼ Tr zIN − Eð Þ−1

h i
=N, and zk = λk − iη

(i is the imaginary unit; Bun, Allez, et al., 2016; Bun, Bouchaud, & Potters, 2016; Bun et al.,
2017; Ibáñez-Berganza et al., 2023; Ledoit & Péché, 2011). This estimator minimizes, among
all estimators that share the same eigenvectors of the sample correlation, the Euclidean dis-
tance from the true correlation matrix in the high-dimensional limit. The parameter η should
be small, and such that Nη ≫ 1 (Bun, Bouchaud, & Potters, 2016). While a convenient
choice is given by η = N−1/2 (Bun, Allez, et al., 2016; Bun, Bouchaud, & Potters, 2016;
Ibáñez-Berganza et al., 2023), this may lead to values that are not small enough if N is
not extremely large (Bun, Bouchaud, & Potters, 2016). Therefore, following Ibáñez-Berganza
et al. (2023), we choose to cross-validate this parameter to maximize the validation-set
likelihood.

Except for ORIE and GLASSO, the regularization methods that we took into account in this
work depend on a tuning parameter that we generically call α, ranging from zero (correspond-
ing to no regularization at all, in which case the correlation matrix estimate equates the sample
correlation E) to α = 1 (maximum regularization). The regularization parameter coincides with

the parameter a of LS and with N−p
N for PCA and cautPCA.

As explained in more detail in the Supporting Information, the regularization parameters are
set, by cross-validation, to those maximizing the validation-set likelihood at the level of the
single subject BOLD time series.

Percolation Threshold

As mentioned, we obtained the connectivity graphs from the respective thresholded connectivity
matrices. In particular, we thresholded the matrices at the percolation cutoff, meaning that we
gradually removed the matrix elements in order of increasing weight, stopping just before the
corresponding graph would break into more than one disconnected component. Among
the many sparsification methods that have been proposed in neuroscience, this method has
the advantage of providing a connected graph whose final density depends on the graph
topology. Moreover, in Nicolini et al. (2020), the application of the percolation threshold
was shown to provide the optimal balance between the removal of noise and genuine infor-
mation, maximizing the distance of FC from its randomized counterpart, and it was suggested
that its application is critical for the extraction of the large-scale structure from the network.

Hierarchical Clustering

We compared the architectures of each pair of SC and FC graphs, both at the subject and
population levels, based on their hierarchical clusterings. Hierarchical, or agglomerative,
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clustering is an unsupervised method for finding communities in N-dimensional observation
vectors. The algorithm produces a whole hierarchy of nested data partitions that can be rep-
resented as a dendrogram. As a result of this step, we obtained a couple of sets of partitions
PGF mð Þ and PGS mð Þ in m modules, ∀m = 2, 50, representing the hierarchical partitions of both

FC and SC graphs.

In particular, we have made use of a hierarchical clustering algorithm whose distance
matrix is built as exp(−Mij), where M is the connectivity graph adjacency matrix. More in
detail, we used SciPy implementation module (Virtanen et al., 2020), with metric = cosine

metric and method = weighted, taking as input the so called 1-D condensed distance matrix
built from the adjacency matrix.

Cross-Modularity

To evaluate the similarity of the partitions of the FC and SC, we introduced a metric that, given
the partitions PGF mð Þ and PGS mð Þ, simultaneously takes into account their individual quality

and their reciprocal similarity for each number of modules m. Therefore, we define the
cross-modularity χ(m) as

χGF ;GS
mð Þ ¼ QGF mð Þ ⋅ QGS mð Þ ⋅ νGF ;GS mð Þ� �1=3

(2)

where QG mð Þ is the quality of partition PG mð Þ, measured in terms of the Newmann Modularity
(Newman, 2006; we measured it ignoring the links’ weights), and νGF ;GS mð Þ is the similarity of

partitions PGF mð Þ and PGS mð Þ, measured in terms of adjusted NMI (Xuan Vinh et al., 2010).

Cross-modularity is a variation of the homonym metric first introduced in Diez et al. (2015);
there, a unique partition P(m) was applied to both SC and FC graphs, and the agreement
between the communities of the two graphs was then computed as the average agreement
(measured as Sorensen index) between the couple of communities induced on SC and FC
by each module of P(m).

More in detail, Newman modularity is a measure of the quality of a particular partition of a
graph into modules, defined in Newman (2006) as:

QG ¼ 1
2L

XN
i;j

Aij −
didj
2L

� �
δ ci ; cj
� �

(3)

where L is the number of edges, A is the adjacency matrix, di is the degree of i, and δ(ci, cj) is 1
if i and j belong to the same community, else 0. This quantity is proportional to the number of
intramodule edges minus its expected number in a network with equal degree sequence and
random links. Consequently, modularity approaching 1 indicates a high-quality partition (high
intracluster and low intercluster density), while it would vanish in the case of a random one
(Van Mieghem et al., 2010).

Mutual information (MI) is an information-theoretic tool that measures the amount of infor-
mation shared by two partitions; its normalized and adjusted version (NMI), where the adjust-
ment discards the matches due to chance, was proposed in Romano et al., 2016):

NMI ¼ MI − E MI½ �
maxMI − E MI½ � (4)

(where symbol E[⋅] stands for the expected value), so that this quantity vanishes in case of
comparison of random partitions and reaches 1 for perfect coherence.
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As a consequence, cross-modularity may achieve a maximum value of 1 in the case of
high-quality partitions and a perfect match, while it vanishes in the case of unrelated partitions
or if at least one of them is random. We have measured Newman modularity using the imple-
mentation in Hagberg et al. (2008) and NMI using the implementation in Pedregosa et al.
(2011).

Spectral Distance

In addition to the single-subject cross-modularity, we also computed the spectral distance
(Jovanović & Stanić, 2012) of the connectivity graphs’ adjacency matrices between each cou-
ple of subjects for both the SC graph and every estimate of the FC graph. In general, the spec-
tral distance measures the difference between a couple of matrices in terms of the difference
between their eigenvalues:

d M 1ð Þ;M 2ð Þ
� �

¼
XN
i

jλ 1ð Þ
i − λ 2ð Þ

i j (5)

where λ jð Þ
i , with j = 1, 2 and i = 1, …, N are the matricesM(1) andM(2) eigenvalues. To make fair

the comparison between the spectral distance of the subjects’ FC (which are bounded, in
absolute value, between 0 and 1) and SC (which are expressed as the number of white
matter streamlines) adjacency matrices, we normalized the values of the (thresholded) GS

adjacency matrix as 2 arctan ⋅ð Þ
π .

Characterization of the Optimal FC Brain Partition in Terms of Brain-Related Disorders

Once obtained the optimal (in the sense of higher cross-modularity) partition of the opti-
mal (in the sense of statistical regularization) estimate of the FC graph at the population
level, we characterized its modules depending on their participation in 40 major brain-
related disorders from seven disease groups (psychiatric disorders, substance abuse,
movement disorders, neurodegenerative diseases, tumor conditions, developmental dis-
orders, and others). Our method follows the procedure adopted in Jimenez-Marin et al.
(2024), work associated with the Zenodo dataset from which we extracted the transcrip-
tomic data. For each disease and for each module, we computed the disease expression
value as the median value across the genes associated with the disease and across the
nodes contained in the module. The heatmap in Figure 5 shows the across-modules Z
scores of the diseases expressions, with absolute values higher than 2 marked with an
asterisk, and diseased grouped by the World Health Organization categories (also
obtained from archive; Zeighami et al., 2023).

Robustness Check of the Optimal FC Brain Partition

We have checked the robustness of the partition of our estimate of the population FC graph
by comparing it with different estimates inferred from 100 bootstrap samplings of the data-
set. In particular, for 100 times, we iterated the following procedure: We randomly selected
136 subjects (importantly, with repetitions), we computed an estimate of the population

GF ðeJÞ of these subjects, with regularization method GS and we partitioned it into 12 mod-
ules; finally, we computed the match of each partition with the whole-dataset one (i.e., the
partition shown in Figure 2) in terms of NMI, finding an overall score of 0.86. We addition-
ally measured the robustness of each whole-dataset partition’s module as its across-
sampling average NMI similarity to the most similar module in the subsampling partition.
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The results, shown in Figure 5B, reveal that some modules, Module M12 in primis, are
particularly robust.
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