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Highlights

Neuroimaging features are effective for age prediction, while neuropsychological tests

are better at distinguishing clinical groups, reflecting their distinct roles.

e Ordering features by their mutual information with age improves initial Mean Absolute
Error (MAE) of BrainAge models, whereas ordering features by mutual information of
their discriminative power enhances the use of deltas for classification but worsens the
age prediction accuracy of BrainAge models.

e BrainAge deltas encapsulate disease progression but do not consistently improve
classification accuracy compared to using the features directly in a classifier, highlighting
the need for further research on their utility.

e All methods are integrated into AgeML., an Open-Source tool for age modeling for

reproduction and validation purposes and to encourage further research in diverse areas

beyond the brain.
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Abstract
Background

BrainAge models estimate the biological age of the brain using neuroimaging or clinical features,
making them promising tools for studying neurodegenerative diseases like Alzheimer’s disease.
However, the reliance of BrainAge models on neuroimaging features such as grey matter volume
and hippocampal atrophy, can introduce biases linked to individuals’ ages as these features are
influenced both by normal aging and Alzheimer’s disease progression. The potential presence of
such age-biases raises a critical question: can BrainAge models trained to estimate biological
brain aging make meaningful contributions to Alzheimer’s diagnosis, or does any introduced
age-bias conflate aging effects with disease pathology? Understanding how deliberate feature
selection impacts this confounding effect is essential for developing reliable age-related

biomarkers.
Methodology

We ranked neuroimaging and neuropsychological features based on their mutual information
with age and their discriminative power across four clinical groups: cognitively normal, Mild
Cognitive Impairment, Alzheimer’s Disease, stable Mild Cognitive Impairment and progressive
Mild Cognitive Impairment. Iteratively, we trained BrainAge models using different subsets of
these features, some optimized for predicting aging and others for discrimination of clinical
Alzheimer’s disease stages. We assess the error in BrainAge delta, the difference between
predicted biological age and chronological age, and evaluate its classification performance across
clinical groups. Finally, we compare using deltas for classification with a logistic regression

model directly trained on the neuroimaging features used in the BrainAge models.
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Results

Neuroimaging features are more strongly correlated with aging, while neuropsychological features
exhibit greater discriminative power for Alzheimer’s disease classification. BrainAge models
optimized for age prediction yield deltas that are suboptimal when used for classifying Alzheimer’s
disease, whereas models trained to generate deltas optimized to be used for classifying Alzheimer’s
disease have reduced age prediction accuracy. This trade-off suggests that BrainAge models may
not optimally separate aging-related changes from disease-specific alterations. BrainAge models
have varying classification accuracy as compared to direct utilization of features in logistic
regression. However, BrainAge provides a continuous measure, offering a single output that can
be used across clinical stages, in contrast to classification approaches that require explicit labels

for each disease stage.

Conclusion

Aging significantly affects BrainAge-based classification of Alzheimer’s disease. Feature
selection plays a critical role in mitigating this effect, as the outputs of models trained to predict
age, the deltas, may fail in Alzheimer’s disease classification. These findings underscore the need
for task-specific feature selection and model design to ensure that BrainAge models are

appropriately applied in neurodegenerative disease research.
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1. Introduction

BrainAge models are predictive tools developed using machine learning or deep learning
techniques to estimate an individual’s chronological age based on neuroimaging data (Franke et
al., 2010). BrainAge models are often employed to assess deviations from typical aging
trajectories, with the difference between a participant's predicted and actual age, referred to as the
BrainAge delta, serving as a potential biomarker for various diseases. A positive delta indicates
that the brain appears older than expected in reference to a healthy brain of that same age, whereas
a negative delta suggests a younger-appearing brain. This metric is increasingly used as a
biomarker of brain health, with higher BrainAge deltas linked to neurodegeneration and cognitive
decline while lower deltas may reflect resilience to aging processes. These models have gained
significant attention in the study of neurodegenerative diseases, such as Alzheimer’s disease (AD)
(Gaser et al., 2013) as well as psychiatric disorders and other neurological conditions (Baecker et

al., 2021).

Despite the potential of BrainAge models, several challenges hinder their generalizability and
clinical utility. One critical issue is the inherent bias introduced by training models on sample
populations that are not representative of the broader population. For instance, most models are
developed using data from predominantly white individuals, which can result in biased predictions
when applied to diverse populations (Moguilner et al., 2024; Puc et al., 2021). Additionally, the
definition of "healthy" in age modeling is varies depending on the study, and this variability in

training data can further skew results (de Lange et al., 2022; Franke and Gaser, 2019).

Another major challenge is the reproducibility of neuroimaging-based models, especially across
different imaging sites and protocols (Korbmacher et al., 2023; Yu et al., 2024). Variability in

image acquisition, preprocessing, and analysis methods can introduce noise, complicating efforts
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to develop models that are robust and generalizable (Gebre et al., 2023). Although initiatives like
the Brain Age Standardized Evaluation (BASE) (Dular and Spiclin, 2024) aim to standardize
BrainAge prediction workflows, there remains a need for consensus on evaluation criteria and the

consistent application of these standards.

Our previous work has demonstrated that BrainAge models with poorer age prediction accuracy
can, at times, yield deltas that perform better when used as input in downstream tasks, such as
classifying between stable Mild Cognitive Impairment (sMCI) and progressive MCI (pMCI) to
AD (Garcia Condado et al., 2023). This suggests that optimizing models purely for age prediction
may not necessarily lead to better outcomes when using the deltas to distinguish between
individuals with AD dementia and cognitively normal individuals. Despite aging being a strong
predictor of dementia, it is non-specific to any one disease, making it challenging to distinguish

between normal and pathological ageing.

In this work, we aim to explore how the choice of features used in BrainAge models affects both
the error in age prediction and the¢ performance of deltas when used as input in auxiliary
downstream tasks, such as classifying between clinical groups. Specifically, we investigate these
relationships in the context of AD to elucidate the trade-offs between prediction accuracy and
classification performance. We rank neuroimaging and neuropsychological features based on their
relationship with age and their discriminative power across clinical groups. By constructing
BrainAge models with different feature sets, we assess the error in BrainAge delta and its
classification performance when used as input to a logistic regressor. Finally, we compare the

predictive value of BrainAge delta to a direct classification approach using neuroimaging features.

2. Materials and Methods
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In this study, we explore two different approaches to BrainAge modeling, see Fig. 1. Our first
approach explores how BrainAge models trained on different feature sets compare in their age
prediction error compared to the use of the generated deltas in the downstream task of classifying
two different clinical groups. Our second approach explores whether using the BrainAge deltas for

classification is better than using the features directly with a logistic regression for classification.

Both methodologies have been integrated for easy use within AgeML (Garcia Condado et al.,
2025). AgeML is an OpenSource Python package for Age Modeling with Machine Learning. The
first approach is integrated under the command model feature influence, see Fig. 1 Top panel.
The second approach is integrated under the command age model vs_logistic_regression, see
Fig. 1 Bottom panel. The OpenSource code can be found in the GitHub repository:

github.com/compneurobilbao/ageml.

2.1 Data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) (Petersen et al., 2010). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). All participants in the ADNI2 and ADNI3
phases who had an initial visit with T1-weighted imaging of 3T and neuropsychological evaluation
were extracted from the ADNI database. This included clinically normal older adults (CN), and

MCI and AD participants. The demographics are provided in Table 1.
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Using longitudinal data, we identified those who progressed from MCI to AD. sMCI participants
were considered stable if they continued to be diagnosed with MCI after 3 years from the initial
visit. Similarly, only participants who progressed to AD within 3 years from the initial visit were

considered pMCIL.

Models were built using structural brain features extracted from T1-weighted images and
neuropsychological features at baseline. Ten neuroimaging volumetric features were obtained from
T1-weighted images from each participant's first visit. Three of the ten features were extracted
with the Structural Image Evaluation with Normalisation of Atrophy Cross-sectional (SIENAX)
(Smith et al., 2002), part of FMRIB Software Library (FSL) (Smith et al., 2004) to obtain grey
matter volume, white matter volume, cerebrospinal fluid volume, as well as a volume scale value.
Then the other seven features were extracted using the FMRIB's Integrated Registration and
Segmentation Tool (FIRST) (Patenaude et al., 2011) to segment and calculate the volumes of the
thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens over both
hemispheres. The volume scale value was used to control for differences in brain size. We also
extracted these same features using FreeSurfer 7.2 (Fischl, 2012) and cortical thickness
measurements for . the inferior parietal, inferior temporal, middle temporal, entorhinal,
parahippocampal and fusiform regions. Accuracy of the segmentation tools, both sensitivity and
specificity, are published elsewhere (Fischl, 2012; Patenaude et al., 2011; Smith et al., 2002). We
selected features from T1-weighted imaging due to their lower variability in signal-to-noise ratio
and reduced site-related differences (Warrington et al., 2025), as well as prior evidence that
structural metrics outperform functional MRI measures in age modeling (Guan et al., 2023). In

particular, we focused on subcortical volumes and cortical thickness because they are strongly
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implicated in both aging and Alzheimer’s disease such as the hippocampus (Sabuncu, 2011),

amygdala (Poulin et al., 2011) and cortical thinning of the cortex (Bakkour et al., 2009).

Six neuropsychological features were obtained from neuropsychological assessments from each
participant's first visit. These consisted of scores from standard neuropsychological tests: Mini-
Mental State Examination (MMSE)(Folstein et al., 1975), Alzheimer's Disease Assessment Scale
(ADAS) (“A new rating scale for Alzheimer’s disease,” 1984), Functional Assessment
Questionaire (FAQ) (Pfeffer et al., 1982), and Montreal Cognitive Assessment (MoCA)
(Nasreddine et al., 2005), as well as two metrics generated in the ADNI study: ADNI Memory
score (for the Alzheimer’s Disease Neuroimaging Initiative et al., 2012a) and ADNI Executive
Function (for the Alzheimer’s Disease Neuroimaging Initiative et al., 2012b). We compare 4

different clinical groups in the study: CN vs MCIL, CN vs AD, MCI vs AD and sMCI vs pMCI.
2.2 Age prediction and classification accuracy for different feature sets

To create the different feature sets, we first order the features based on mutual information (MI),
which is well known for capturing relationships beyond the linear dependencies detected by
pairwise correlations. In particular, defined from information theory, MI quantifies the statistical
dependency between variables, providing a measure of how much knowing one variable reduces
uncertainty about another. We use MI to rank features according to two criteria. First, features are
ordered by their MI with age using the function mutual information regression from sklearn
(“Scikit-learn: Machine Learning in Python,” n.d.). This ranking reflects the extent to which each
feature individually correlates with age. Second, features are ranked based on their discriminative
power between two clinical groups by calculating their MI with clinical labels using the function
mutual _information_classif from sklearn (“Scikit-learn: Machine Learning in Python,” n.d.). This

approach identifies features most relevant for distinguishing between clinical labels. For each
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different case, feature sets are created by starting with the feature with the highest mutual
information and iteratively adding the next feature with the next highest mutual information. In
this study, we use 10 neuroimaging features (grey matter, white matter, cerebrospinal fluid,
thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens normalized
volumes) and 6 neuropsychological features (MMSE, ADAS, FAQ, MoCA, ADNI Memory and

ADNI executive), so a total of 16 feature sets are created.

For each feature set, we train a BrainAge model based on healthy controls. Specific details on the
model training can be found in the Methods section of AgeML (Garcia Condado et al., 2025). In
summary, with y as age, X as our feature set and f () as our pipeline, we optimize the parameters
of our pipeline f() by means of minimizing the mean squared error of age on cognitively normal
controls. Our pipeline consists of a feature scaler and a linear regressor and we use a 5-fold cross-
validation scheme. The reported age prediction error, the Mean Absolute Error (MAE), is reported

before the age bias correction step (de Lange and Cole, 2020).

Afterwards we apply the BrainAge model to the two clinical groups of interest to obtain predicted
ages. We then calculate age deltas, the predicted age after age bias correction minus the
chronological age, for each participant. If one of the clinical groups is the control group, the
predicted ages from the cross-validation out-of-fold predictions are used. Then the deltas are used
as input into a logistic regressor to classify between two groups and obtain Areas Under the Curve
(AUC). To handle class imbalance within cross-validation, we first stratify the n-fold CV split to
preserve the original class ratios. Within each training fold, we then apply undersampling of the
majority class to match the number of participants in the smaller group. This procedure prevents
information leakage whilst the test fold remains representative of the original population

distribution. This avoids optimistic bias because class rebalancing was carried out separately
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within each cross-validation fold before computing the AUC. To address potential circularity in
using cognitive test to build BrainAge models whose deltas are later used for classification, we
trained the BrainAge model exclusively on healthy controls, preventing data leakage from MCI or

AD subjects as argued in previous studies (Garcia Condado et al., 2023).

For each BrainAge model trained on each feature set, we obtain a MAE for the age prediction task
and an AUC from using the deltas in the downstream classification task. We then plot the MAE
and AUC over the number of features used in training for each model and repeat this process for

the two different types of ordering.
2.3 Classification accuracy for different models

We also examine how classification accuracy varies across different models. Specifically, we train
four logistic regression models using different inputs. Three models use BrainAge deltas as input
to a logistic regressor, where the deltas are derived from three different BrainAge models: a linear
regressor, a Ridge regressor, and an SVM. In addition, we train a separate logistic regression model
directly on the feature sets. For this analysis, only neuroimaging features are used, as some
neuropsychological test features may have been considered by clinicians when assigning clinical
labels. Excluding these features helps prevent potential biases in classification when using directly

the features in classification.

We are also interested in understanding the value of the BrainAge deltas in terms of whether it
adds extra information to the classification task. Therefore, we also train 4 distinct logistic
regressors and compare their AUC. The 4 logistic regressors use the following as input: all
neuroimaging features, all neuroimaging features and the age of participants, only the BrainAge

delta, all neuroimaging features and the BrainAge delta.



Journal Pre-proof

3. Results
3.1 Age prediction error and classification accuracy for different feature sets

The results of the feature ranking are shown in Table 2, listed in descending order of importance.
The “Age” column refers to the relationship with age, while the remaining columns reflect the
discriminatory power of each feature between clinical groups. We look at discrimination between
4 scenarios: CN vs AD, CN vs MCI, MCI vs AD and sMCI vs pMCI. Neuroimaging features were
found to be more informative for inferring age, whereas neuropsychological features proved more
effective in discriminating between clinical groups. When mapping MI with age and the
discriminative power of each feature in Fig. 2, neuroimaging features show higher MI with age
than with classification, whereas neuropsychological features show lower MI with age than with
classification. However, neuropsychological features also show low MI when attempting to
distinguish between sMCI and pMCI because at baseline these two subgroups are both
characterized as MCI and hence, share similar cognitive profiles. Supplementary Fig. 1 shows the
correlation between FIRST/FAST segmentation outputs and FreeSurfer outputs. In Supplementary
Fig. 2 and Supplementary Table 1 it can be seen that cortical thickness measurements are worse at
predicting age than subcortical volumes and are worse than neuropsychological features to
distinguish between different groups. However, the entorhinal cortical thickness measurements
show greater power at discrimination between CN and AD than neuroimaging features of
subcortical volumes. Many of the cortical thickness measurements are also more powerful at

discriminating sMCI vs pMCI than subcortical volumes.

After obtaining the different feature rankings, the pipeline is executed four times, once for each of
the four classification tasks of interest: CN vs AD, CN vs MCI, MCI vs AD and sMCI vs pMCI.

Results are shown in Fig. 3. This figure illustrates how MAE and AUC evolve as more features
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are added to each set, depending on whether the features are more relevant for age modeling or for
classifying clinical groups. When features are ranked by their relevance to age, the initial models
trained on the top-ranked subset tend to predict age more accurately, but the deltas perform worse
in classification tasks. We see the opposite effect when the features are ranked in importance to
discriminate. However, when classifying sMCI and pMCI, we observe that the age-based and
discrimination-based models begin to overlap earlier as more features are added because
neuropsychological features show MI values comparable to those of neuroimaging features in
distinguishing between these two groups. In Supplementary Fig. 3 we see that adding cortical

thickness measurements yields similar results.
3.2 Logistic Regression using features vs BrainAge deltas

We trained three different BrainAge models: a linear regressor, a ridge regressor and a SVM with
different neuroimaging features. We compared the classification performance of BrainAge deltas
with that of using the original features directly in a logistic regressor. The results for all four
scenarios --CN vs AD, CN vs MCI, MCI vs AD and sMCI vs pMCI-- are shown in Fig. 4. Using
the original features as input to the logistic regressor yielded the best performance in CN vs AD
and CN vs MCI, similar performance to the other models in MCI vs AD but worse in sMCI vs
pMCI. In Supplementary Fig. 4 we see that adding cortical thickness measurements which have
higher power of discrimination cause the AUC performance of the logistic regressor trained on the
original features to outperform all BrainAge models, that do not see an increase in AUC

performance.

Finally, using all neuroimaging features, we evaluated whether adding age or the delta as an
additional feature could improve classification performance. The results for each scenario are

summarized in Table 3. Adding neither age nor the delta appeared to improve the AUC, as most
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values remained within one standard deviation of each other. Repeating the experiment with 5
different random seeds did not yield fluctuating results as seen in the standard deviations of

Supplementary Table 2.

4. Discussion

This study aimed to evaluate how different neuroimaging and neuropsychological features
influence BrainAge predictions and the utility of BrainAge deltas in classifying AD participants.
By analyzing the relationship between these features and both age estimation and clinical group
distinctions, we assessed the reliability of BrainAge deltas as biomarkers. Our findings provide
insight into the strengths and limitations of using BrainAge maodels for AD classification,
highlighting key factors that impact their performance and the need for careful feature selection

based on specific research and clinical objectives.

As expected, ranking features by their age prediction accuracy and discriminative power highlights
the distinct contributions of neuroimaging and neuropsychological features. Neuroimaging
features, specifically grey matter and particularly those related to brain structures like the
hippocampus, thalamus, and amygdala, are highly effective in predicting age. In contrast,
neuropsychological scores excel at discriminating between clinical groups. This supports the idea
that age prediction relies more on the structural integrity of brain regions, while cognitive

performance metrics are more sensitive to the pathological distinctions between clinical groups.

It is important to consider possible circularity in using BrainAge deltas built with
neuropsychological testing features for classification due to their role in clinical diagnosis, i.e.,
assigning healthy control, MCI, and AD labels in the first place. In ADNI for example, diagnostic

assessment of AD staging includes a selection of these tests in combination with cutoff points and
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other clinical assessments, such as the Clincal Dementia Rating score not used in this study
(Petersen et al., 2010). In the present study, this concern was accounted for by training our
BrainAge model on healthy controls and, and thus preventing data leakage in terms of biases in
the BrainAge deltas, as the model is not trained on MCI or AD. In the specific case of classifying
sMCI and pMCI, despite neuropsychological tests contributing to initial diagnostic classification,
our approach avoids circularity by use of baseline scores to predict future conversion rather than
reclassifying subjects based on later assessments (Garcia Condado et al., 2023). Excluding
neuropsychological features reduced sSMCI vs. pMCI classification performance from 0.91 to 0.68
AUC (Garcia Condado et al., 2023). In Fig. 3, this is further illustrated at x = 1, where the full
green line is always a neuropsychological feature and achieves a substantially higher AUC than
the dotted green line which is a single neuroimaging feature. These findings indicate that
neuropsychological tests carry predictive information beyond their traditional role in diagnostic
labeling based on cutoffs, supporting their validity for assessing and monitoring disease
progression. We acknowledge a potential limitation and bias in using neuropsychological tests that
were part of the clinical decision-making process. Further research is needed using more deeply
phenotyped cohorts to explore the effect of training on different neuropsychological tests that were

not used in the diagnosis labelling process.

Notably, the hippocampus is consistently identified for its high discriminative power across all
clinical groups. The hippocampus is among the earliest regions affected by AD pathology, and its
atrophy is strongly associated to memory deficits, a hallmark of the disease. In the discrimination
tasks, hippocampal volumes are effective at distinguishing between CN, MCI, and AD groups,
which aligns with the well-established literature on the role of the hippocampus in cognitive

decline (Mu and Gage, 2011). The early inclusion of hippocampal features in both age and
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discrimination-ordered sets further underscores its dual importance in aging and AD progression.
This is consistent with previous findings showing that hippocampal connectivity is indeed
significantly affected by aging, but, other circuits—such as the fronto-striato-thalamic network—
are even more severely disrupted (see Fig. S4 in Bonifazi et al) (Bonifazi et al., 2018). Thus,
although the hippocampus is involved in both aging and AD, its prominent role in AD disease may
reflect a stronger association with pathological processes rather than normal aging, highlighting

the interaction between these two mechanisms.

Our results show clear distinctions between BrainAge models trained on feature sets ranked by
age than those ranked by their discriminative power across clinical groups. When features are
ranked based on their relationship with age, the MAE of BrainAge models begin at a lower value,
indicating that the model achieves higher age prediction accuracy with the top-ranked features. In
this case, when using the produced delta tor classification the AUC increases steadily as more
features are included in the BrainAge model. Thus, reflecting progressively improved ability of
the generated deltas to discriminate between clinical groups. This suggests that age-related features
provide a solid foundation for accurate age prediction, while classification performance improves

progressively as additional, more diverse features are incorporated.

Conversely, when features are ranked by their discriminative power, the BrainAge model’s delta
AUC shows a higher intercept, reflecting better initial classification performance. However, the
MAE of the BrainAge model has a higher intercept compared to the age-ranked feature sets,
indicating less accurate age predictions at the onset. Hence, better age prediction does not always
mean better classification power. A key transition point occurs when neuroimaging features start

to appear in the discrimination-ordered set, after which the AUC stabilizes and MAE decreases.
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However, we do not see an increase in AUC. This indicates that neuroimaging features enhance

age prediction but worsen classification accuracy.

Our previous study showed that models just trained on neuropsychological data outperformed
those trained on neuroimaging data on the classification task but not in age prediction error (Garcia
Condado et al., 2023). We acknowledge that this is to be expected since neuropsychological testing
is used to diagnose and is an inherent part of the process. However, as argued above this is not
circular reasoning since the BrainAge models are trained in the healthy cohort and never use
neuropsychological data from MCI or AD during training. Hencg, it is important to determine what
the use of the calculated deltas will be when creating BrainAge models. Subsequently, the model

should be trained with the features required for its respective task.

Recent studies have emphasized the importance of distinguishing between brain changes due to
typical aging and those caused by AD. Hwang et al. (2022) introduced machine learning models
such as SPARE-AD and SPARE-BA to decouple the effects of aging and neurodegeneration in
brain imaging data (Hwang et al., 2022). Their results showed that by employing conservative
molecular diagnoses and introducing Alzheimer’s continuum cases, it was possible to derive more
specific neuroanatomical biomarkers for aging and AD, reducing the overlap in brain regions
affected by both processes. Similarly, Binette et al. (2020) investigated grey matter differences
across a wide age range and in AD patients, finding that while both aging and AD contribute to
widespread brain atrophy, AD uniquely disrupts whole-brain morphometric organization (Pichet
Binette et al., 2020). This disruption in grey matter pattern, more than volume loss, was strongly
associated with cognitive impairment, highlighting the need to account for these distinct
mechanisms when assessing BrainAge. Alternatively, feature importance for biological aging

FIBA has been proposed as a method to improve the relevance of age models by identifying
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features that contribute specifically to biological rather than chronological age, refining their

association with cognitive traits (Oh et al., 2023).

Our results indicate that training a logistic regression directly on the features either outperforms or
equals a logistic regression trained on BrainAge deltas. The results tend to be similar or worse
when the classification task is harder, like when distinguishing sMCI vs pMCI. However, when
cortical thickness measurements are included, BrainAge models perform worse at distinguishing
between sSMCI vs pMCI. While a direct classifier can exploit the discriminative value of cortical
thickness, this information appears to be lost in the BrainAge modelling process. This is in line
with a recent study that found that neural network-based BrainAge models, when retrained for
classification, perform worse than models trained directly for classification (Tan et al., 2025).
Training on different regression models, such as linear regression ridge regression, and SVM does
not improve performance. This outcome is likely influenced by the high linear correlation among
neuroimaging features, as a model using a single key feature often performs similarly to those
incorporating multiple features. Grey matter volume in particular plays a dominant role in both
age prediction and discrimination across clinical groups, highlighting its central importance in

distinguishing disease states.

However, BrainAge offers an advantage over training a logistic regressor directly with features.
BrainAge deltas encapsulate disease progression within a single metric rather than requiring
training separate classification models for each clinical group. Prior studies have shown that
BrainAge deltas correlate with the time to conversion from MCI to AD (Garcia Condado et al.,
2023), making them a potentially useful quantitative biomarker for assessing risk. This further
underscores the need for careful consideration when applying BrainAge models to clinical

decision-making.
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Adding age or BrainAge delta as additional features does not consistently improve classification
accuracy, as indicated by minimal AUC increases that remain within standard deviations. This
variability suggests that neither age nor delta provides substantial independent discriminative value
beyond the primary neuroimaging features. Notably, repeating the classification process with
different data partitions and cross-validation folds leads to wide fluctuations in results,
emphasizing the sensitivity of the models to sample variation. This finding points to the need for
further research to better understand the potential utility of age and delta features in classification,
as well as the robustness of these models across varying sample conditions. Recent studies suggest
that using chronological age as a pretraining target might be suboptimal for predicting specific

health outcomes (Tan et al., 2025).

A limitation of this work is that only neuroimaging features from a single modality, T1-weighted
images, are included in the analysis. Features from these modalities were chosen because there is
lower variability compared to diffusion or functional brain imaging (Warrington et al., 2025).
While the ADNI dataset offers rich multimodal imaging, it was collected across a large number of
scanners with relatively few subjects per site (e.g., fewer than 10 participants in many centers),
which introduces substantial site-related variability. This effect is particularly problematic for
modalities such as diffusion MRI and functional MRI, where sequence parameters, scanner
hardware, and acquisition protocols strongly influence signal-to-noise ratios and overall
reproducibility. Previous studies have also shown that structural based metrics outperform
functional MRI metrics at the age modelling prediction task (Guan et al., 2023). Including more
quantitative measurements such as cortical thickness measurements did not improve age prediction
accuracies in line with previous studies (Guan et al., 2023). Previous studies have shown that

harmonization can slightly improve BrainAge model performance (Garcia Condado et al., 2023).
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Harmonization techniques are more relevant to functional and diffusion data as they show higher
site effects (Warrington et al., 2025; Yu et al., 2024). As this study only uses T1w imaging features
site harmonization was not applied. Future studies with larger and more balanced site distributions
could better isolate biological from site-related effects in BrainAge estimates that use functional
and diffusion metrics. On the other hand, the processing pipelines we have employed are fully
open-source, and we encourage further exploration of multimodal approaches using datasets that

are more homogeneous or specifically designed to minimize inter-site variability.
Conclusion

Our findings demonstrate that neuroimaging and neuropsychological features play distinct roles in
age prediction and disease classification in the context of BrainAge modeling, with neuroimaging
features excelling in age prediction and neuropsychological features showing greater sensitivity to
clinical distinctions. The hippocampus and grey matter volume emerge as critical biomarkers in
both aging and Alzheimer’s disease progression. The instability of results across different model
configurations and data splits suggests a need for further exploration into feature robustness and
optimal model selection based on task-specific requirements. Overall, while BrainAge deltas can
provide a useful single metric associated with the risk of developing Alzheimer's disease, their

application should be carefully considered in the context of specific clinical and research goals.
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Figure 1. Overview of the two new commands for AgeML to explore the relationship between
age prediction and classification accuracy. 7op panel: Model Feature Influence pipeline
schematic. First, the provided features are ranked according to their mutual information with age
or according to their discriminative power to classify the specified clinical groups. Then, age
regression and clinical classification models are trained with the computed orderings to evaluate
how the progressive addition of features affects the performance of the models. The progression
curves are automatically plotted. Bottom panel: Age Models versus direct logistic regression
pipeline. The given features are first ranked according to the same criterion from above. After, two
logistic regressor types are trained to classify the specified clinical groups; one based on an age
delta computed from Age models; and the other directly using the features. The performance of
the classifiers is plotted trained with increasingly more features added in the computed orderings,

similar to the panel above. A summary table and the progression curves are automatically output.
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Figure 2. Mutual information of each feature with Age and their discriminative power. In blue are features derived from
neuroimaging metrics and in orange features derived from neuropsychological testis. Control (CN), Alzheimer’s Disease (AD), Mild
Cognitive Impairment (MCI), stable MCI (sMCI), and progressive MCI (pMCI). Each specific feature name in the graph can be derived

from Table 2.
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Figure. 3. Comparison of the performance metrics, Mean Absolute Error (MAE), and Area
Under the Curve (AUC) for different health condition groups using BrainAge Modelling.
Features are added to the BrainAge model in descending order based on their age relationship
(dotted line). Additionally, features are added to the BrainAge model in descending order
according to their importance in discriminating between the following groups: Control (CN),
Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), stable MCI (sMCI), and
progressive MCI (pMCI) (solid line). The shaded areas show the 95% confidence intervals of the

MAE and AUC measurements.
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Figure. 4. Comparison of the Area Under the Curve (AUC) using different machine
learning models for classification using neuroimaging features. Blue line: Input to logistic
regressor: Delta. BrainAge model: linear regression. Orange line: Input to logistic regressor:
Delta. BrainAge model: Ridge. Green line: Input to logistic regressor: Delta. BrainAge model:
Support Vector Regressor. Red line: Input to logistic regressor: Neuroimaging Features, No
BrainAge modeling. Models are tested and trained across clinical classification groups and
features ordering by Age Relationship and by discrimination between groups order (Control
Group (CN), Alzheimer Disease (AD), Mild Cognitive Impairment (MCI), stable Mild Cognitive
Impairment (sMCI) and progressive Mild Cognitive Impairment (pMCI)). The blue and orange

line overlap. Error bars show the standard deviation of the AUC across CV folds.
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Tables

Table 1. Cohort demographics

CN MCI AD sMCI pMCI
Characteristic p-value?
N=629' N=635' N=208'" N=238'" N=098
Gender <0.001
Female 364 (58%) 279 (44%) 87 (42%) 110 (46%) 43 (44%)
Male 265 (42%) 356 (56%) 121 (58%) 128 (54%) 55 (56%)
Age (Years) 72 (7) 72 (8) 75 (8) 73 (8) 73 (7) <0.001
Education (Years) 17 (2) 16 (3) 16 (3) 16 (3) 16 (3) <0.001

'n (%); Mean (SD)

ZPearson's Chi-squared test; Kruskal-Wallis rank sum test

Table 2. Results of ranking features across different orderings. The features are ordered in
descending importance according to the variable indicated in the column header. The first column
indicates ordering according to mutual information with age, while the subsequent columns make
a comparison between the mutual information of features for the following groups: Control Group
(CN), Alzheimer’s Diseases (AD), Mild Cognitive Impairment (MCI), Stable Mild Cognitive

Impairment (sMCI) and Progressive Mild Cognitive Impairment (pMCI).

Set Age CN vs AD CN vs MCI MCI vs AD sMCI vs pMCI
1 Grey Matter ADNI Memory | ADNI Memory MMSE ADAS
2 Thalamus MMSE FAQ ADAS ADNI Memory
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3 Cere;’lrl‘l’is(fmal FAQ ADAS ADNI Memory MMSE
4 Hippocampus ADAS MMSE FAQ FAQ
ADNI
5 Executive MoCA MoCA MoCA White Matter
Function
ADNI ADNI ADNI
6 Accumbens Executive Executive Executive MoCA
Function Function Function
ADNI

7 ADNI Memory Hippocampus Grey Matter Hippocampus Executive

Function
8 Putamen Grey Matter Thalamus Grey Matter Hippocampus

Cerebrospinal .
9 Amygdala Fluid Amygdala Accumbens Pallidum
10 Pallidum Thalamus Pallidum Thalamus Accumbens
Cerebrospinal Cerebrospinal

11 ADAS Putamen Fluid Fluid Grey Matter
12 Caudate Accumbens Caudate Amygdala Cere;)lrli)i?lnal
13 MoCA Amygdala Accumbens Putamen Thalamus
14 FAQ Caudate Putamen Caudate Caudate
15 White Matter Pallidum Hippocampus White Matter Putamen
16 MMSE White Matter White Matter Pallidum Amygdala
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Table 3. Comparison of the Area Under the Curve (AUC) across various clinical
classifications using different input feature sets. The classification was performed using a
Logistic Regressor and included all brain structural features for the following groups: Control
Group (CN), Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), stable Mild Cognitive
Impairment (sMCI), and progressive Mild Cognitive Impairment (pMCI). + indicates standard

deviations across CV folds.

Groups Features Features + Age Delta Fe;l)t:llt.zs *
CN vs MCI 0.62 +0.02 0.63 £0.02 0.63 +0.03 0.63 +0.02
CNvsAD 0.86 +£0.03 0.87 +0.03 0.81+0.04 0.87 +0.03
MCI vs AD 0.76 £0.03 0.76 + 0.03 0.69 +0.05 0.76 £ 0.04
pMCI vs sMCI 0.58 +0.09 0.62 +0.07 0.67 +£0.04 0.63 +0.07
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Data and Code Availability Statement

Data used in the preparation of this article was obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). Researchers can obtain access to
this data by registering through the Laboratory of Neuro Imaging (LONI): ida.loni.usc.edu. The
code used in this work is open source and  publicly available:

www.github.com/compneurobilbao/ageml.
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