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Highlights 

• Neuroimaging features are effective for age prediction, while neuropsychological tests 

are better at distinguishing clinical groups, reflecting their distinct roles. 

• Ordering features by their mutual information with age improves initial Mean Absolute 

Error (MAE) of BrainAge models, whereas ordering features by mutual information of 

their discriminative power enhances the use of deltas for classification but worsens the 

age prediction accuracy of BrainAge models. 

• BrainAge deltas encapsulate disease progression but do not consistently improve 

classification accuracy compared to using the features directly in a classifier, highlighting 

the need for further research on their utility. 

• All methods are integrated into AgeML, an Open-Source tool for age modeling for 

reproduction and validation purposes and to encourage further research in diverse areas 

beyond the brain.  
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Abstract 

Background 

BrainAge models estimate the biological age of the brain using neuroimaging or clinical features, 

making them promising tools for studying neurodegenerative diseases like Alzheimer’s disease. 

However, the reliance of BrainAge models on neuroimaging features such as grey matter volume 

and hippocampal atrophy, can introduce biases linked to individuals’ ages as these features are 

influenced both by normal aging and Alzheimer’s disease progression. The potential presence of 

such age-biases raises a critical question: can BrainAge models trained to estimate biological 

brain aging make meaningful contributions to Alzheimer’s diagnosis, or does any introduced 

age-bias conflate aging effects with disease pathology? Understanding how deliberate feature 

selection impacts this confounding effect is essential for developing reliable age-related 

biomarkers. 

Methodology 

We ranked neuroimaging and neuropsychological features based on their mutual information 

with age and their discriminative power across four clinical groups: cognitively normal, Mild 

Cognitive Impairment, Alzheimer’s Disease, stable Mild Cognitive Impairment and progressive 

Mild Cognitive Impairment. Iteratively, we trained BrainAge models using different subsets of 

these features, some optimized for predicting aging and others for discrimination of clinical 

Alzheimer’s disease stages. We assess the error in BrainAge delta, the difference between 

predicted biological age and chronological age, and evaluate its classification performance across 

clinical groups. Finally, we compare using deltas for classification with a logistic regression 

model directly trained on the neuroimaging features used in the BrainAge models.  

                  



Results 

Neuroimaging features are more strongly correlated with aging, while neuropsychological features 

exhibit greater discriminative power for Alzheimer’s disease classification. BrainAge models 

optimized for age prediction yield deltas that are suboptimal when used for classifying Alzheimer´s 

disease, whereas models trained to generate deltas optimized to be used for classifying Alzheimer’s 

disease have reduced age prediction accuracy. This trade-off suggests that BrainAge models may 

not optimally separate aging-related changes from disease-specific alterations. BrainAge models 

have varying classification accuracy as compared to direct utilization of features in logistic 

regression. However, BrainAge provides a continuous measure, offering a single output that can 

be used across clinical stages, in contrast to classification approaches that require explicit labels 

for each disease stage. 

Conclusion 

Aging significantly affects BrainAge-based classification of Alzheimer’s disease. Feature 

selection plays a critical role in mitigating this effect, as the outputs of models trained to predict 

age, the deltas, may fail in Alzheimer´s disease classification. These findings underscore the need 

for task-specific feature selection and model design to ensure that BrainAge models are 

appropriately applied in neurodegenerative disease research. 

 

  

  

                  



1. Introduction 

BrainAge models are predictive tools developed using machine learning or deep learning 

techniques to estimate an individual’s chronological age based on neuroimaging data (Franke et 

al., 2010). BrainAge models are often employed to assess deviations from typical aging 

trajectories, with the difference between a participant's predicted and actual age, referred to as the 

BrainAge delta, serving as a potential biomarker for various diseases. A positive delta indicates 

that the brain appears older than expected in reference to a healthy brain of that same age, whereas 

a negative delta suggests a younger-appearing brain. This metric is increasingly used as a 

biomarker of brain health, with higher BrainAge deltas linked to neurodegeneration and cognitive 

decline while lower deltas may reflect resilience to aging processes. These models have gained 

significant attention in the study of neurodegenerative diseases, such as Alzheimer’s disease (AD) 

(Gaser et al., 2013) as well as psychiatric disorders and other neurological conditions (Baecker et 

al., 2021). 

Despite the potential of BrainAge models, several challenges hinder their generalizability and 

clinical utility. One critical issue is the inherent bias introduced by training models on sample 

populations that are not representative of the broader population. For instance, most models are 

developed using data from predominantly white individuals, which can result in biased predictions 

when applied to diverse populations (Moguilner et al., 2024; Puc et al., 2021). Additionally, the 

definition of "healthy" in age modeling is varies depending on the study, and this variability in 

training data can further skew results (de Lange et al., 2022; Franke and Gaser, 2019). 

Another major challenge is the reproducibility of neuroimaging-based models, especially across 

different imaging sites and protocols (Korbmacher et al., 2023; Yu et al., 2024). Variability in 

image acquisition, preprocessing, and analysis methods can introduce noise, complicating efforts 

                  



to develop models that are robust and generalizable (Gebre et al., 2023). Although initiatives like 

the Brain Age Standardized Evaluation (BASE) (Dular and Špiclin, 2024) aim to standardize 

BrainAge prediction workflows, there remains a need for consensus on evaluation criteria and the 

consistent application of these standards. 

Our previous work has demonstrated that BrainAge models with poorer age prediction accuracy 

can, at times, yield deltas that perform better when used as input in downstream tasks, such as 

classifying between stable Mild Cognitive Impairment (sMCI) and progressive MCI (pMCI) to 

AD (Garcia Condado et al., 2023). This suggests that optimizing models purely for age prediction 

may not necessarily lead to better outcomes when using the deltas to distinguish between 

individuals with AD dementia and cognitively normal individuals. Despite aging being a strong 

predictor of dementia, it is non-specific to any one disease, making it challenging to distinguish 

between normal and pathological ageing.  

In this work, we aim to explore how the choice of features used in BrainAge models affects both 

the error in age prediction and the performance of deltas when used as input in auxiliary 

downstream tasks, such as classifying between clinical groups. Specifically, we investigate these 

relationships in the context of AD to elucidate the trade-offs between prediction accuracy and 

classification performance. We rank neuroimaging and neuropsychological features based on their 

relationship with age and their discriminative power across clinical groups. By constructing 

BrainAge models with different feature sets, we assess the error in BrainAge delta and its 

classification performance when used as input to a logistic regressor. Finally, we compare the 

predictive value of BrainAge delta to a direct classification approach using neuroimaging features. 

2. Materials and Methods 

                  



In this study, we explore two different approaches to BrainAge modeling, see Fig. 1. Our first 

approach explores how BrainAge models trained on different feature sets compare in their age 

prediction error compared to the use of the generated deltas in the downstream task of classifying 

two different clinical groups. Our second approach explores whether using the BrainAge deltas for 

classification is better than using the features directly with a logistic regression for classification.  

Both methodologies have been integrated for easy use within AgeML (Garcia Condado et al., 

2025). AgeML is an OpenSource Python package for Age Modeling with Machine Learning. The 

first approach is integrated under the command model_feature_influence, see Fig. 1 Top panel. 

The second approach is integrated under the command age_model_vs_logistic_regression, see 

Fig. 1 Bottom panel. The OpenSource code can be found in the GitHub repository: 

github.com/compneurobilbao/ageml. 

2.1 Data 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) (Petersen et al., 2010). The ADNI 

was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). All participants in the ADNI2 and ADNI3 

phases who had an initial visit with T1-weighted imaging of 3T and neuropsychological evaluation 

were extracted from the ADNI database. This included clinically normal older adults (CN), and 

MCI and AD participants. The demographics are provided in Table 1.  

                  



Using longitudinal data, we identified those who progressed from MCI to AD. sMCI participants 

were considered stable if they continued to be diagnosed with MCI after 3 years from the initial 

visit. Similarly, only participants who progressed to AD within 3 years from the initial visit were 

considered pMCI. 

Models were built using structural brain features extracted from T1-weighted images and 

neuropsychological features at baseline. Ten neuroimaging volumetric features were obtained from 

T1-weighted images from each participant's first visit. Three of the ten features were extracted 

with the Structural Image Evaluation with Normalisation of Atrophy Cross-sectional (SIENAX) 

(Smith et al., 2002), part of FMRIB Software Library (FSL) (Smith et al., 2004) to obtain grey 

matter volume, white matter volume, cerebrospinal fluid volume, as well as a volume scale value. 

Then the other seven features were extracted using the FMRIB's Integrated Registration and 

Segmentation Tool (FIRST) (Patenaude et al., 2011) to segment and calculate the volumes of the 

thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens over both 

hemispheres. The volume scale value was used to control for differences in brain size. We also 

extracted these same features using FreeSurfer 7.2 (Fischl, 2012) and cortical thickness 

measurements for the inferior parietal, inferior temporal, middle temporal, entorhinal, 

parahippocampal and fusiform regions.  Accuracy of the segmentation tools, both sensitivity and 

specificity, are published elsewhere (Fischl, 2012; Patenaude et al., 2011; Smith et al., 2002). We 

selected features from T1-weighted imaging due to their lower variability in signal-to-noise ratio 

and reduced site-related differences (Warrington et al., 2025), as well as prior evidence that 

structural metrics outperform functional MRI measures in age modeling (Guan et al., 2023). In 

particular, we focused on subcortical volumes and cortical thickness because they are strongly 

                  



implicated in both aging and Alzheimer’s disease such as the hippocampus (Sabuncu, 2011), 

amygdala (Poulin et al., 2011) and cortical thinning of the cortex (Bakkour et al., 2009). 

Six neuropsychological features were obtained from neuropsychological assessments from each 

participant's first visit. These consisted of scores from standard neuropsychological tests: Mini-

Mental State Examination (MMSE)(Folstein et al., 1975), Alzheimer's Disease Assessment Scale 

(ADAS) (“A new rating scale for Alzheimer’s disease,” 1984), Functional Assessment 

Questionaire (FAQ) (Pfeffer et al., 1982), and Montreal Cognitive Assessment (MoCA) 

(Nasreddine et al., 2005), as well as two metrics generated in the ADNI study: ADNI Memory 

score (for the Alzheimer’s Disease Neuroimaging Initiative et al., 2012a) and ADNI Executive 

Function (for the Alzheimer’s Disease Neuroimaging Initiative et al., 2012b). We compare 4 

different clinical groups in the study: CN vs MCI, CN vs AD, MCI vs AD and sMCI vs pMCI.  

2.2 Age prediction and classification accuracy for different feature sets 

To create the different feature sets, we first order the features based on mutual information (MI), 

which is well known for capturing relationships beyond the linear dependencies detected by 

pairwise correlations. In particular, defined from information theory, MI quantifies the statistical 

dependency between variables, providing a measure of how much knowing one variable reduces 

uncertainty about another. We use MI to rank features according to two criteria. First, features are 

ordered by their MI with age using the function mutual_information_regression from sklearn 

(“Scikit-learn: Machine Learning in Python,” n.d.). This ranking reflects the extent to which each 

feature individually correlates with age. Second, features are ranked  based on their discriminative 

power between two clinical groups by calculating their MI with clinical labels using the function 

mutual_information_classif from sklearn (“Scikit-learn: Machine Learning in Python,” n.d.). This 

approach identifies features most relevant for distinguishing between clinical labels. For each 

                  



different case, feature sets are created by starting with the feature with the highest mutual 

information and iteratively adding the next feature with the next highest mutual information. In 

this study, we use 10 neuroimaging features (grey matter, white matter, cerebrospinal fluid, 

thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens normalized 

volumes) and 6 neuropsychological features (MMSE, ADAS, FAQ, MoCA, ADNI Memory and 

ADNI executive), so a total of 16 feature sets are created.  

For each feature set, we train a BrainAge model based on healthy controls. Specific details on the 

model training can be found in the Methods section of AgeML (Garcia Condado et al., 2025). In 

summary, with 𝑦 as age, 𝑿 as our feature set and 𝑓() as our pipeline, we optimize the parameters 

of our pipeline 𝑓() by means of minimizing the mean squared error of age on cognitively normal 

controls. Our pipeline consists of a feature scaler and a linear regressor and we use a 5-fold cross-

validation scheme. The reported age prediction error, the Mean Absolute Error (MAE), is reported 

before the age bias correction step (de Lange and Cole, 2020). 

Afterwards we apply the BrainAge model to the two clinical groups of interest to obtain predicted 

ages. We then calculate age deltas, the predicted age after age bias correction minus the 

chronological age, for each participant. If one of the clinical groups is the control group, the 

predicted ages from the cross-validation out-of-fold predictions are used. Then the deltas are used 

as input into a logistic regressor to classify between two groups and obtain Areas Under the Curve 

(AUC). To handle class imbalance within cross-validation, we first stratify the n-fold CV split to 

preserve the original class ratios. Within each training fold, we then apply undersampling of the 

majority class to match the number of participants in the smaller group. This procedure prevents 

information leakage whilst the test fold remains representative of the original population 

distribution. This avoids optimistic bias because class rebalancing was carried out separately 

                  



within each cross-validation fold before computing the AUC. To address potential circularity in 

using cognitive test to build BrainAge models whose deltas are later used for classification, we 

trained the BrainAge model exclusively on healthy controls, preventing data leakage from MCI or 

AD subjects as argued in previous studies (Garcia Condado et al., 2023). 

For each BrainAge model trained on each feature set, we obtain a MAE for the age prediction task 

and an AUC from using the deltas in the downstream classification task. We then plot the MAE 

and AUC over the number of features used in training for each model and repeat this process for 

the two different types of ordering. 

2.3 Classification accuracy for different models 

We also examine how classification accuracy varies across different models. Specifically, we train 

four logistic regression models using different inputs. Three models use BrainAge deltas as input 

to a logistic regressor, where the deltas are derived from three different BrainAge models: a linear 

regressor, a Ridge regressor, and an SVM. In addition, we train a separate logistic regression model 

directly on the feature sets. For this analysis, only neuroimaging features are used, as some 

neuropsychological test features may have been considered by clinicians when assigning clinical 

labels. Excluding these features helps prevent potential biases in classification when using directly 

the features in classification.   

We are also interested in understanding the value of the BrainAge deltas in terms of whether it 

adds extra information to the classification task. Therefore, we also train 4 distinct logistic 

regressors and compare their AUC. The 4 logistic regressors use the following as input: all 

neuroimaging features, all neuroimaging features and the age of participants, only the BrainAge 

delta, all neuroimaging features and the BrainAge delta.  

                  



3. Results 

3.1 Age prediction error and classification accuracy for different feature sets 

The results of the feature ranking are shown in Table 2, listed in descending order of importance. 

The “Age” column refers to the relationship with age, while the remaining columns reflect the 

discriminatory power of each feature between clinical groups. We look at discrimination between 

4 scenarios: CN vs AD, CN vs MCI, MCI vs AD and sMCI vs pMCI. Neuroimaging features were 

found to be more informative for inferring age, whereas neuropsychological features proved more 

effective in discriminating between clinical groups. When mapping MI with age and the 

discriminative power of each feature in Fig. 2, neuroimaging features show higher MI with age 

than with classification, whereas neuropsychological features show lower MI with age than with 

classification. However, neuropsychological features also show low MI when attempting to 

distinguish between sMCI and pMCI because at baseline these two subgroups are both 

characterized as MCI and hence, share similar cognitive profiles. Supplementary Fig. 1 shows the 

correlation between FIRST/FAST segmentation outputs and FreeSurfer outputs. In Supplementary 

Fig. 2 and Supplementary Table 1 it can be seen that cortical thickness measurements are worse at 

predicting age than subcortical volumes and are worse than neuropsychological features to 

distinguish between different groups. However, the entorhinal cortical thickness measurements 

show greater power at discrimination between CN and AD than neuroimaging features of 

subcortical volumes. Many of the cortical thickness measurements are also more powerful at 

discriminating sMCI vs pMCI than subcortical volumes. 

After obtaining the different feature rankings, the pipeline is executed four times, once for each of 

the four classification tasks of interest: CN vs AD, CN vs MCI, MCI vs AD and sMCI vs pMCI. 

Results are shown in Fig. 3. This figure illustrates how MAE and AUC evolve as more features 

                  



are added to each set, depending on whether the features are more relevant for age modeling or for 

classifying clinical groups. When features are ranked by their relevance to age, the initial models 

trained on the top-ranked subset tend to predict age more accurately, but the deltas perform worse 

in classification tasks. We see the opposite effect when the features are ranked in importance to 

discriminate. However, when classifying sMCI and pMCI, we observe that the age-based and 

discrimination-based models begin to overlap earlier as more features are added because 

neuropsychological features show MI values comparable to those of neuroimaging features in 

distinguishing between these two groups. In Supplementary Fig. 3 we see that adding cortical 

thickness measurements yields similar results.   

3.2 Logistic Regression using features vs BrainAge deltas 

We trained three different BrainAge models: a linear regressor, a ridge regressor and a SVM with 

different neuroimaging features. We compared the classification performance of BrainAge deltas 

with that of using the original features directly in a logistic regressor. The results for all four 

scenarios --CN vs AD, CN vs MCI, MCI vs AD and sMCI vs pMCI-- are shown in Fig. 4. Using 

the original features as input to the logistic regressor yielded the best performance in CN vs AD 

and CN vs MCI, similar performance to the other models in MCI vs AD but worse in sMCI vs 

pMCI. In Supplementary Fig. 4 we see that adding cortical thickness measurements which have 

higher power of discrimination cause the AUC performance of the logistic regressor trained on the 

original features to outperform all BrainAge models, that do not see an increase in AUC 

performance.  

Finally, using all neuroimaging features, we evaluated whether adding age or the delta as an 

additional feature could improve classification performance. The results for each scenario are 

summarized in Table 3. Adding neither age nor the delta appeared to improve the AUC, as most 

                  



values remained within one standard deviation of each other. Repeating the experiment with 5 

different random seeds did not yield fluctuating results as seen in the standard deviations of 

Supplementary Table 2. 

4. Discussion 

This study aimed to evaluate how different neuroimaging and neuropsychological features 

influence BrainAge predictions and the utility of BrainAge deltas in classifying AD participants. 

By analyzing the relationship between these features and both age estimation and clinical group 

distinctions, we assessed the reliability of BrainAge deltas as biomarkers. Our findings provide 

insight into the strengths and limitations of using BrainAge models for AD classification, 

highlighting key factors that impact their performance and the need for careful feature selection 

based on specific research and clinical objectives. 

As expected, ranking features by their age prediction accuracy and discriminative power highlights 

the distinct contributions of neuroimaging and neuropsychological features. Neuroimaging 

features, specifically grey matter and particularly those related to brain structures like the 

hippocampus, thalamus, and amygdala, are highly effective in predicting age. In contrast, 

neuropsychological scores excel at discriminating between clinical groups. This supports the idea 

that age prediction relies more on the structural integrity of brain regions, while cognitive 

performance metrics are more sensitive to the pathological distinctions between clinical groups.  

It is important to consider possible circularity in using BrainAge deltas built with 

neuropsychological testing features for classification due to their role in clinical diagnosis, i.e., 

assigning healthy control, MCI, and AD labels in the first place. In ADNI for example, diagnostic 

assessment of AD staging includes a selection of these tests in combination with cutoff points and 

                  



other clinical assessments, such as the Clincal Dementia Rating score not used in this study 

(Petersen et al., 2010). In the present study, this concern was accounted for by training our 

BrainAge model on healthy controls and, and thus preventing data leakage in terms of biases in 

the BrainAge deltas, as the model is not trained on MCI or AD. In the specific case of classifying 

sMCI and pMCI, despite neuropsychological tests contributing to initial diagnostic classification, 

our approach avoids circularity by use of baseline scores to predict future conversion rather than 

reclassifying subjects based on later assessments (Garcia Condado et al., 2023). Excluding 

neuropsychological features reduced sMCI vs. pMCI classification performance from 0.91 to 0.68 

AUC (Garcia Condado et al., 2023). In Fig. 3, this is further illustrated at x = 1, where the full 

green line is always a neuropsychological feature and achieves a substantially higher AUC than 

the dotted green line which is a single neuroimaging feature. These findings indicate that 

neuropsychological tests carry predictive information beyond their traditional role in diagnostic 

labeling based on cutoffs, supporting their validity for assessing and monitoring disease 

progression. We acknowledge a potential limitation and bias in using neuropsychological tests that 

were part of the clinical decision-making process. Further research is needed using more deeply 

phenotyped cohorts to explore the effect of training on different neuropsychological tests that were 

not used in the diagnosis labelling process. 

Notably, the hippocampus is consistently identified for its high discriminative power across all 

clinical groups. The hippocampus is among the earliest regions affected by AD pathology, and its 

atrophy is strongly associated to memory deficits, a hallmark of the disease. In the discrimination 

tasks, hippocampal volumes are effective at distinguishing between CN, MCI, and AD groups, 

which aligns with the well-established literature on the role of the hippocampus in cognitive 

decline (Mu and Gage, 2011). The early inclusion of hippocampal features in both age and 

                  



discrimination-ordered sets further underscores its dual importance in aging and AD progression. 

This is consistent with previous findings showing that hippocampal connectivity is indeed 

significantly affected by aging, but, other circuits—such as the fronto-striato-thalamic network—

are even more severely disrupted (see Fig. S4 in Bonifazi et al) (Bonifazi et al., 2018). Thus, 

although the hippocampus is involved in both aging and AD, its prominent role in AD disease may 

reflect a stronger association with pathological processes rather than normal aging, highlighting 

the interaction between these two mechanisms. 

Our results show clear distinctions between BrainAge models trained on feature sets ranked by 

age than those ranked by their discriminative power across clinical groups. When features are 

ranked based on their relationship with age, the MAE of BrainAge models begin at a lower value, 

indicating that the model achieves higher age prediction accuracy with the top-ranked features. In 

this case, when using the produced delta for classification the AUC increases steadily as more 

features are included in the BrainAge model. Thus, reflecting progressively improved ability of 

the generated deltas to discriminate between clinical groups. This suggests that age-related features 

provide a solid foundation for accurate age prediction, while classification performance improves 

progressively as additional, more diverse features are incorporated. 

Conversely, when features are ranked by their discriminative power, the BrainAge model’s delta 

AUC shows a higher intercept, reflecting better initial classification performance. However, the 

MAE of the BrainAge model has a higher intercept compared to the age-ranked feature sets, 

indicating less accurate age predictions at the onset. Hence, better age prediction does not always 

mean better classification power. A key transition point occurs when neuroimaging features start 

to appear in the discrimination-ordered set, after which the AUC stabilizes and MAE decreases. 

                  



However, we do not see an increase in AUC. This indicates that neuroimaging features enhance 

age prediction but worsen classification accuracy. 

Our previous study showed that models just trained on neuropsychological data outperformed 

those trained on neuroimaging data on the classification task but not in age prediction error (Garcia 

Condado et al., 2023). We acknowledge that this is to be expected since neuropsychological testing 

is used to diagnose and is an inherent part of the process. However, as argued above this is not 

circular reasoning since the BrainAge models are trained in the healthy cohort and never use 

neuropsychological data from MCI or AD during training. Hence, it is important to determine what 

the use of the calculated deltas will be when creating BrainAge models. Subsequently, the model 

should be trained with the features required for its respective task.  

Recent studies have emphasized the importance of distinguishing between brain changes due to 

typical aging and those caused by AD. Hwang et al. (2022) introduced machine learning models 

such as SPARE-AD and SPARE-BA to decouple the effects of aging and neurodegeneration in 

brain imaging data (Hwang et al., 2022). Their results showed that by employing conservative 

molecular diagnoses and introducing Alzheimer’s continuum cases, it was possible to derive more 

specific neuroanatomical biomarkers for aging and AD, reducing the overlap in brain regions 

affected by both processes. Similarly, Binette et al. (2020) investigated grey matter differences 

across a wide age range and in AD patients, finding that while both aging and AD contribute to 

widespread brain atrophy, AD uniquely disrupts whole-brain morphometric organization (Pichet 

Binette et al., 2020). This disruption in grey matter pattern, more than volume loss, was strongly 

associated with cognitive impairment, highlighting the need to account for these distinct 

mechanisms when assessing BrainAge. Alternatively, feature importance for biological aging 

FIBA has been proposed as a method to improve the relevance of age models by identifying 

                  



features that contribute specifically to biological rather than chronological age, refining their 

association with cognitive traits (Oh et al., 2023). 

Our results indicate that training a logistic regression directly on the features either outperforms or 

equals a logistic regression trained on BrainAge deltas. The results tend to be similar or worse 

when the classification task is harder, like when distinguishing sMCI vs pMCI. However, when 

cortical thickness measurements are included, BrainAge models perform worse at distinguishing 

between sMCI vs pMCI. While a direct classifier can exploit the discriminative value of cortical 

thickness, this information appears to be lost in the BrainAge modelling process. This is in line 

with a recent study that found that neural network-based BrainAge models, when retrained for 

classification, perform worse than models trained directly for classification (Tan et al., 2025). 

Training on different regression models, such as linear regression ridge regression, and SVM does 

not improve performance. This outcome is likely influenced by the high linear correlation among 

neuroimaging features, as a model using a single key feature often performs similarly to those 

incorporating multiple features. Grey matter volume in particular plays a dominant role in both 

age prediction and discrimination across clinical groups, highlighting its central importance in 

distinguishing disease states.  

However, BrainAge offers an advantage over training a logistic regressor directly with features. 

BrainAge deltas encapsulate disease progression within a single metric rather than requiring 

training separate classification models for each clinical group. Prior studies have shown that 

BrainAge deltas correlate with the time to conversion from MCI to AD (Garcia Condado et al., 

2023), making them a potentially useful quantitative biomarker for assessing risk. This further 

underscores the need for careful consideration when applying BrainAge models to clinical 

decision-making.  

                  



Adding age or BrainAge delta as additional features does not consistently improve classification 

accuracy, as indicated by minimal AUC increases that remain within standard deviations. This 

variability suggests that neither age nor delta provides substantial independent discriminative value 

beyond the primary neuroimaging features. Notably, repeating the classification process with 

different data partitions and cross-validation folds leads to wide fluctuations in results, 

emphasizing the sensitivity of the models to sample variation. This finding points to the need for 

further research to better understand the potential utility of age and delta features in classification, 

as well as the robustness of these models across varying sample conditions. Recent studies suggest 

that using chronological age as a pretraining target might be suboptimal for predicting specific 

health outcomes (Tan et al., 2025). 

A limitation of this work is that only neuroimaging features from a single modality, T1-weighted 

images, are included in the analysis. Features from these modalities were chosen because there is 

lower variability compared to diffusion or functional brain imaging (Warrington et al., 2025). 

While the ADNI dataset offers rich multimodal imaging, it was collected across a large number of 

scanners with relatively few subjects per site (e.g., fewer than 10 participants in many centers), 

which introduces substantial site-related variability. This effect is particularly problematic for 

modalities such as diffusion MRI and functional MRI, where sequence parameters, scanner 

hardware, and acquisition protocols strongly influence signal-to-noise ratios and overall 

reproducibility. Previous studies have also shown that structural based metrics outperform 

functional MRI metrics at the age modelling prediction task (Guan et al., 2023). Including more 

quantitative measurements such as cortical thickness measurements did not improve age prediction 

accuracies in line with previous studies (Guan et al., 2023). Previous studies have shown that 

harmonization can slightly improve BrainAge model performance (Garcia Condado et al., 2023). 

                  



Harmonization techniques are more relevant to functional and diffusion data as they show higher 

site effects (Warrington et al., 2025; Yu et al., 2024). As this study only uses T1w imaging features 

site harmonization was not applied. Future studies with larger and more balanced site distributions 

could better isolate biological from site-related effects in BrainAge estimates that use functional 

and diffusion metrics. On the other hand, the processing pipelines we have employed are fully 

open-source, and we encourage further exploration of multimodal approaches using datasets that 

are more homogeneous or specifically designed to minimize inter-site variability. 

Conclusion 

Our findings demonstrate that neuroimaging and neuropsychological features play distinct roles in 

age prediction and disease classification in the context of BrainAge modeling, with neuroimaging 

features excelling in age prediction and neuropsychological features showing greater sensitivity to 

clinical distinctions. The hippocampus and grey matter volume emerge as critical biomarkers in 

both aging and Alzheimer’s disease progression.  The instability of results across different model 

configurations and data splits suggests a need for further exploration into feature robustness and 

optimal model selection based on task-specific requirements. Overall, while BrainAge deltas can 

provide a useful single metric associated with the risk of developing Alzheimer's disease, their 

application should be carefully considered in the context of specific clinical and research goals. 
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Figures 

 

 

Figure 1. Overview of the two new commands for AgeML to explore the relationship between 

age prediction and classification accuracy. Top panel: Model Feature Influence pipeline 

schematic. First, the provided features are ranked according to their mutual information with age 

or according to their discriminative power to classify the specified clinical groups. Then, age 

regression and clinical classification models are trained with the computed orderings to evaluate 

how the progressive addition of features affects the performance of the models. The progression 

curves are automatically plotted. Bottom panel: Age Models versus direct logistic regression 

pipeline. The given features are first ranked according to the same criterion from above. After, two 

logistic regressor types are trained to classify the specified clinical groups; one based on an age 

delta computed from Age models; and the other directly using the features. The performance of 

the classifiers is plotted trained with increasingly more features added in the computed orderings, 

similar to the panel above. A summary table and the progression curves are automatically output.

                  



 

Figure 2. Mutual information of each feature with Age and their discriminative power. In blue are features derived from 

neuroimaging metrics and in orange features derived from neuropsychological testis. Control (CN), Alzheimer’s Disease (AD), Mild 

Cognitive Impairment (MCI), stable MCI (sMCI), and progressive MCI (pMCI). Each specific feature name in the graph can be derived 

from Table 2.

                  



 

Figure. 3. Comparison of the performance metrics, Mean Absolute Error (MAE), and Area 

Under the Curve (AUC) for different health condition groups using BrainAge Modelling. 

Features are added to the BrainAge model in descending order based on their age relationship 

(dotted line). Additionally, features are added to the BrainAge model in descending order 

according to their importance in discriminating between the following groups: Control (CN), 

Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), stable MCI (sMCI), and 

progressive MCI (pMCI) (solid line). The shaded areas show the 95% confidence intervals of the 

MAE and AUC measurements.

                  



 

Figure. 4. Comparison of the Area Under the Curve (AUC) using different machine 

learning models for classification using neuroimaging features. Blue line: Input to logistic 

regressor: Delta. BrainAge model: linear regression. Orange line: Input to logistic regressor: 

Delta. BrainAge model: Ridge. Green line: Input to logistic regressor: Delta. BrainAge model: 

Support Vector Regressor. Red line: Input to logistic regressor: Neuroimaging Features, No 

BrainAge modeling. Models are tested and trained across clinical classification groups and 

features ordering by Age Relationship and by discrimination between groups order (Control 

Group (CN), Alzheimer Disease (AD), Mild Cognitive Impairment (MCI), stable Mild Cognitive 

Impairment (sMCI) and progressive Mild Cognitive Impairment (pMCI)). The blue and orange 

line overlap. Error bars show the standard deviation of the AUC across CV folds.

                  



Tables 

Table 1. Cohort demographics 

Characteristic 
CN   

N = 6291 

MCI   

N = 6351 

AD   

N = 2081 

sMCI   

N = 2381 

pMCI   

N = 981 
p-value2 

Gender      <0.001 

Female 364 (58%) 279 (44%) 87 (42%) 110 (46%) 43 (44%)  

Male 265 (42%) 356 (56%) 121 (58%) 128 (54%) 55 (56%)  

Age (Years) 72 (7) 72 (8) 75 (8) 73 (8) 73 (7) <0.001 

Education (Years) 17 (2) 16 (3) 16 (3) 16 (3) 16 (3) <0.001 

1n (%); Mean (SD) 

2Pearson's Chi-squared test; Kruskal-Wallis rank sum test 

 

 

Table 2. Results of ranking features across different orderings. The features are ordered in 

descending importance according to the variable indicated in the column header. The first column 

indicates ordering according to mutual information with age, while the subsequent columns make 

a comparison between the mutual information of features for the following groups: Control Group 

(CN), Alzheimer’s Diseases (AD), Mild Cognitive Impairment (MCI), Stable Mild Cognitive 

Impairment (sMCI) and Progressive Mild Cognitive Impairment (pMCI). 

Set Age CN vs AD CN vs MCI MCI vs AD sMCI vs pMCI 

1 Grey Matter ADNI Memory ADNI Memory MMSE ADAS 

2 Thalamus MMSE FAQ ADAS ADNI Memory 

                  



3 
Cerebrospinal 

Fluid 
FAQ ADAS ADNI Memory MMSE 

4 Hippocampus ADAS MMSE FAQ FAQ 

5 

ADNI 

Executive 

Function 

MoCA MoCA MoCA White Matter 

6 Accumbens 

ADNI 

Executive 

Function 

ADNI 

Executive 

Function 

ADNI 

Executive 

Function 

MoCA 

7 ADNI Memory Hippocampus Grey Matter Hippocampus 

ADNI 

Executive 

Function 

8 Putamen Grey Matter Thalamus Grey Matter Hippocampus 

9 Amygdala 
Cerebrospinal 

Fluid 
Amygdala Accumbens Pallidum 

10 Pallidum Thalamus Pallidum Thalamus Accumbens 

11 ADAS Putamen 
Cerebrospinal 

Fluid 

Cerebrospinal 

Fluid 
Grey Matter 

12 Caudate Accumbens Caudate Amygdala 
Cerebrospinal 

Fluid 

13 MoCA Amygdala Accumbens Putamen Thalamus 

14 FAQ Caudate Putamen Caudate Caudate 

15 White Matter Pallidum Hippocampus White Matter Putamen 

16 MMSE White Matter White Matter Pallidum Amygdala 

 

                  



 Table 3. Comparison of the Area Under the Curve (AUC) across various clinical 

classifications using different input feature sets. The classification was performed using a 

Logistic Regressor and included all brain structural features for the following groups: Control 

Group (CN), Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), stable Mild Cognitive 

Impairment (sMCI), and progressive Mild Cognitive Impairment (pMCI). ± indicates standard 

deviations across CV folds. 

Groups Features Features + Age Delta 
Features + 

Delta 

CN vs MCI 0.62 ± 0.02 0.63 ± 0.02 0.63 ± 0.03 0.63 ± 0.02 

CN vs AD 0.86 ± 0.03 0.87 ± 0.03 0.81 ± 0.04 0.87 ± 0.03 

MCI vs AD 0.76 ± 0.03 0.76 ± 0.03 0.69 ± 0.05 0.76 ± 0.04 

pMCI vs sMCI 0.58 ± 0.09 0.62 ± 0.07 0.67 ± 0.04 0.63 ± 0.07 

 

  

                  



 

Data and Code Availability Statement 

Data used in the preparation of this article was obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). Researchers can obtain access to 

this data by registering through the Laboratory of Neuro Imaging (LONI): ida.loni.usc.edu. The 

code used in this work is open source and publicly available: 

www.github.com/compneurobilbao/ageml. 
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