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Simple Summary: Early diagnosis and accurate prognosis is essential to personalize treatment
and improve the survival of melanoma patients. We report here a new tool that can improve the
early diagnosis of melanoma through the use of epiluminescence dermatoscopy and deep learning
image analysis. By employing artificial intelligence algorithms to analyze simple serological and
histopathological biomarkers, the risk of metastasis and the disease-free interval of melanoma patients
can be accurately predicted. This low-cost Melanoma Clinical Decision Support System represents an
effective tool to help clinicians manage melanoma patients.

Abstract: This study set out to assess the performance of an artificial intelligence (AI) algorithm based
on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to
define the metastatic progression of melanoma through serological and histopathological biomarkers,
enabling dermatologists to make more informed decisions about patient management. Integrated
analysis of demographic data, images of the skin lesions, and serum and histopathological markers
were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10,
and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating
factor), TGFβ (transforming growth factor), and the protein DCD (dermcidin) were quantified in
the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN,
BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma
biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict
the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis
(including “all patients” or only patients “at early stages of melanoma”), and a series of attributes
were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing
lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be
a marker of poor prognosis in patients with early-stage melanomas.
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1. Introduction

Cutaneous melanoma is the deadliest type of skin cancer, although survival is cur-
rently being enhanced due to prevention strategies and diagnosis at early stages of tumor
development. Nevertheless, the treatment of advanced melanoma remains limited [1],
and early detection and surgical treatment still constitute the best means to improve the
outcome of melanoma patients. The diagnosis of a primary melanoma is achieved by visual
examination of suspicious lesions followed by biopsy. Moreover, the acquisition of clinical
images (photographs of the lesions) can now be complemented by dermatoscopy examina-
tion, currently an important tool to help dermatologists distinguish melanomas from other
pigmented skin lesions [2]. Consequently, software based on artificial intelligence (AI) is
being developed to automate the analysis of images in order to facilitate early diagnosis
of melanoma, and to help dermatologists in both hospital environments and in primary
care consultations [3].

The prognosis of melanoma is defined mainly through histopathological features,
where Breslow thickness and the presence of ulceration are considered the most important
hallmarks [4,5]. However, both these features are most relevant when the neoplastic lesion
is already at an advanced stage. Around 20% of patients diagnosed with early-stage
melanoma (stages I and II, according to the AJCC) develop metastasis in the following
5 years [6], and, significantly, some stage II patients have worse survival than stage III
patients. This phenomenon can be explained by the heterogeneity in the changes during
the evolution of this neoplastic disease, both the genetic alterations and those related to
melanoma cell plasticity [7]. In this context, there is intense activity aimed at discovering
new biomarkers that can offer accurate predictions. These biomarkers must have the
capacity to stratify melanoma patients—for instance, based on proteomic, lipidomic, NGS,
and/or microbiome profiles, and ideally through noninvasive techniques [8]. However,
there are currently no melanoma risk stratification tools that have been well validated or
that are widely used.

In this context, for many years we have focused on classifying early-stage melanoma
patients on the basis of serological and novel histopathological biomarkers that can be
assessed at the time of melanoma diagnosis and initial surgery, thereby identifying profiles
that are most likely to develop to more advanced stages and enabling more effective
treatments for metastatic disease to be implemented [9–11]. Thus, in independent studies
we previously studied, on the one hand, cytokines in the serum of patients [9] and, on
the other hand, histopathological biomarkers in melanoma biopsies [9,10]. We found that
cytokines such as IL-4, IL-6, and GM-CSF are significantly related to a bad prognosis of
patients [9]. In a retrospective study, we have also demonstrated the relationship between
RKIP and Pirin protein expression in melanoma biopsies and malignant progression [10,11].
In the present work, we wanted to know the predictive value of these markers taken
all together in an integrative study using AI. For that, here, serum levels of interleukins
(ILs) such as IL-4, IL-6, IL-10, and IL-17A, IFNγ (interferon-γ), GM-CSF (granulocyte and
macrophage colony-stimulating factor), TGFβ (transforming growth factor β), and DCD
(dermicidin) were assayed, and the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins
were assessed by immunohistochemistry (IHC) in melanoma biopsies from a group of
melanoma patients. Moreover, the presence of infiltrating lymphocytes and macrophages
in the tumor sections was also quantified. By integrating these results and taking into
consideration demographic and clinical data, we designed models based on machine
learning (ML) techniques that are capable of accurately classifying early-stage melanoma
patients with a high or low risk of developing metastasis and predicting the metastasis
disease-free period in months. The Melanoma Clinical Decision Support System (CDSS)
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described here includes a diagnostic module based on deep learning (DL) analysis of clinical
and dermatoscopy images and a prognostic module based on the ML analysis of the other
markers, integrating the expression of all the serological and immunohistopathological
biomarkers analyzed along with the relevant clinical information. This information could
be used clinically to determine the probability of developing metastasis during follow-
up and to make a decision about whether early-stage melanoma patients should receive
adjuvant therapy to prevent metastasis. Thus, the Melanoma CDSS represents a new and
useful diagnostic tool that can also be used to predict the probability of recurrence and
survival, as well as to identify appropriate candidates for adjuvant treatment.

2. Materials and Methods
2.1. Patients

This is a prospective and longitudinal study based on clinical, serological, and molec-
ular biomarker detection in 196 melanoma patients diagnosed at the Basurto and Cruces
University Hospitals (Euskadi, Spain) between 1990 and 2016. The last revision of the
disease follow-up or the status of the patients was updated in December 2019 (Table 1).
The criteria for patient inclusion were a histologically confirmed diagnosis of malignant
melanoma; no treatment except primary surgery (including wide local excision); and no
infection based on the clinical evaluation and absence of increased parameters of infection
in the blood. Biopsies of suspicious lesions were analyzed by a pathologist, and those
patients with a positive diagnosis of melanoma underwent a second surgery to achieve
a wide local excision. Patients diagnosed with stage III or IV melanoma were referred
to the hospital’s Oncology Unit, whereas stage I or II patients (henceforth “early-stage
melanomas”) remained under the supervision of the Dermatology Unit. Upon removal
of the primary tumor, clinical check-ups of the patients with early-stage melanomas were
scheduled every 3 months for the first 2 years of the follow-up and every 6 months there-
after, until a 5-year follow-up had been completed. Annual revisions were then scheduled
up to the 10th year post-surgery. Any patient who developed a metastasis during the
follow-up period was examined again every 3 months for 2 years after the metastasis had
been diagnosed and treated. The presence or absence of metastasis was assessed in all
patients by physical examination, as well as through laboratory and radiological testing
(X-rays and/or computed tomography (CT) scanning). Some patients underwent sentinel
lymph node biopsy, although this was not a generalized procedure. Disease stages were
classified according to the AJCC eighth edition [4], and the clinical and diagnostic data for
each patient were collected retrospectively from centralized electronic and/or hard copy
medical records. For some of the statistical prediction analysis, only early-stage melanoma
patients (I and II stages) were included. Patients who did not develop metastasis in the
first 5 years of the follow-up were grouped as “disease-free.”

The study was conducted in accordance with the Declaration of Helsinki regarding
research on humans, and it was approved by the Euskadi Ethics Committee (No. PI 16–99),
with written informed consent obtained from all the subjects.
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Table 1. Clinical data of melanoma patients.

Nº (%)

Melanomas 196
Age at diagnosis 58 (range, 23–88)

Sex
Male 88 (45)
Female 108 (55)

Disease Evolution
Disease-free 131 (67)
Metastasis 65 (33)

Localization
Head and Neck 34 (17)
Trunk 63 (32)
Upper limb 19 (10)
Lower limb 58 (30)
Acral 14 (7)
Others 5 (2.5)
Unkown 3 (1.5)

Histological subtype
SSM 119 (61)
NM 46 (23.5)
ALM 14 (7)
LMM 9 (4.5)
LM 2 (1)
Others 6 (3)

AJCC stage at diagnosis
In situ 26 (13)
I 92 (47)
II 57 (29)
III 17 (9)
IV 4 (2)

SSM (Superficial Spread Melanoma), NM (Nodular Melanoma), ALM (Acral Lentigo Melanoma), LMM (Lentigo
Malignant Melanoma), LM (Lentigo Melanoma).

2.2. Serological and Molecular Tumor Biomarkers

The serum samples collected from the patients were stored at −80 ◦C, and Formalde-
hyde Fixed Paraffin Embedded (FFPE) melanoma biopsies were held at the Basque Biobank
until use (https://www.biobancovasco.org/, accessed on 3 April 2023). Serological de-
termination of the cytokines (IL-4, IL-6, IL-10, IL-17A, IFNγ, GM-CSF, and TGFβ) and
DCD was performed on serum from 196 melanoma patients. The IHC biomarkers (RKIP,
PIRIN, BCL3, BCL2, MITF, and ANXA5) were studied in the same patients as the serum
biomarkers, and the presence of infiltrating lymphocytes and macrophages in the histologi-
cal melanoma sections was also quantified. The characteristics of the patients are shown in
Table 1, and a summary of the previous studies performed to discover new melanoma risk
factors to include in the Melanoma-CDSS is shown in Table S1 [9–11]. Serological markers
were quantified using the MILLIPLEX MAP Kit, Human High Sensitivity T Cell Magnetic
Bead Panel (EMD Millipore Corporation, Darmstad, Germany). Serum DCD was quantified
with an ELISA Kit (Cusobio Biotech Co. Ltd., Houston, TX, USA) according to the manu-
facturer instructions. For the IHC analysis, sections from FFPE blocks (4 µm thick) were
first subjected to antigen retrieval in citrate buffer [pH 6.1] and steam-treated for 105 min,
and immunohistochemistry was then performed by probing them with antibodies against
RKIP, PIRIN, BCL3, BCL2, MITF, and ANXA5 (Thermo Fisher Scientific, Waltham, MA,
USA). The staining of these proteins are shown in the Figure 1 in representative primary
melanoma biopsies. Antibody binding was assessed using the EnvisionTMG|2 System/AP
Kit (Dako Corporation, Glostrup, Denmark), counterstaining the slides with hematoxylin
and obtaining images on a NanoZoomer S210 Digital slide scanner (C13239-01, Hamamatsu
Photonics, Japan). The staining intensity was evaluated as negative, low, or high based on

https://www.biobancovasco.org/
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independent examination by two observers. Discordant assessments were reviewed jointly
to obtain a conclusive consensus evaluation. The presence of infiltrating lymphocytes
expressing BCL2 (L-BCL2+) was also analyzed and quantified as negative, low, or high
L-BCL2+ expression.
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Figure 1. Biomarker expression in FFPE biopsies of melanomas. H&E and immunostaining for RKIP,
PIRIN, BCL2, BCL3, MITF, and ANXA5 in representative primary melanoma biopsies.

2.3. The Melanoma Clinical Decision Support System (Melanoma CDSS)

The Melanoma CDSS is an application capable of extracting useful information to help
clinicians reach a diagnosis and define the prognosis of melanoma patients based on AI
models. The Melanoma CDSS integrates two modules that send the necessary informa-
tion to each AI model, and it collects the output information before visualizing, storing,
and displaying it. The Melanoma CDSS includes all the user interface (UI) functionali-
ties and different screens, from controlled access to patient selection for the diagnosis to
the prognosis modules, and it connects and integrates the different processing modules.
The Melanoma CDSS also takes into account security and confidentiality issues, through
data encryption, password management, user logging, etc. Moreover, it includes data
I/0 management for both massive batch upload and one-by-one data upload, also storing
the data for later use by clinicians. The functional version of the CDSS UI integrates clinical
patient information, biopsy-derived information (serum biomarkers, IHC biomarkers, etc.),
a diagnostic module based on clinical and dermatoscopy images, and a prognostic module
for metastasis prediction based on molecular data and disease-free time prognosis (in
months) that employs multimodal data. Both the diagnostic and prognostic modules are
assisted by AI models.

In a scheme of the system’s workflow, how the diagnostic and prognostic modules
make use of the available information (images and data) is illustrated (Figure 2). For each
new patient, suspicious lesions are studied with a dermatoscope, and the images collected
are analyzed automatically by the “diagnosis module” of the CDSS, offering a suggested
diagnosis. For lesions suspected to be malignant, a biopsy is taken, and the serum and
IHC biomarkers are examined to achieve a pathological diagnosis. The “prognosis module”
of the CDSS then uses this information, along with additional data (sex, age at diagnosis,
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lesion location, disease-free survival, etc.; Figure 2), to provide a probability of metastasis
and a prediction of patient survival.
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data, the lesion images, and new molecular biomarkers into the AI models for melanoma diagnosis
and prognosis.

2.3.1. Diagnostic Module

The computer-aided diagnosis (CADx) tool has been developed to use clinical and
dermatoscopy images. Two separate AI models were developed, considering that both
types of images might not be available for all the lesions, and complementary diagnostic
predictions were calculated to reinforce and improve current clinical diagnosis. In the
“diagnosis module”, AI models are based on DL approaches, the current gold standard for
medical image processing. DL-based models require large amounts of data for training,
validation, and testing, which is why external datasets are commonly used for the initial
configuration of these models (i.e., to set the initial weights of the network). Data augmen-
tation and imbalance techniques are also usually incorporated into the models in order to
deal with the heterogeneity of the data and to maximize the benefits of the training process.

The AI models developed make use of DL convolutional neural networks (CNNs) [12,13]
for the automatic characterization and classification of images, where most recent examples’
performance [14] demonstrate the technical feasibility as a tool in the daily clinical routine,
although still challenging due to different limitations [15–17]. In the case of clinical images,
a custom model was pre-trained on a database of over 1600 clinical images of nevus,
melanoma, and seborrheic keratosis obtained from the public DermNet initiative [18], and
these were used for training, validation, and testing of the proposed algorithm [19]. The
target problem is the classification of lesions into two classes: melanoma or nonmelanoma
(nevus and seborrheic keratosis). Retraining (fine-tuning) of the model was then performed
with the images taken from the 196 cases collected, splitting the sample into training,
validation, and test sets to evaluate the model. In addition, in the second model, a similar
approach was adopted for dermatoscopy images using the dataset proposed in the ISIC
2017 challenge [20] (see Figure 3). These images present differences inherent to the device
used and related to lighting, colors, shadows, etc., all of which can affect the performance of
the algorithm. For this reason, the second model proposed includes a correction method for
illumination and a lesion segmentation procedure, which proved to be very useful [21]. In
this case, the target classification problem is twofold: melanoma versus others, or seborrheic
keratosis versus others.
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Figure 3. Representative dermatoscopy images of melanoma (A,B), seborrheic keratosis (C,D), and
other lesions (E,F) from the ISIC 2017 challenge dataset.

The performance metrics used from DL analysis for the diagnosis of primary cutaneous
melanoma were the sensitivity and the specificity. Sensitivity, also known as the hit rate or
the true positive rate (TPR), refers to the ability of the model to correctly classify a lesion in
accordance with the lesion’s diagnosis, i.e., the probability that a true melanoma lesion is
classified as such. The specificity, also known as the selectivity or true negative rate (TNR),
refers to the ability of the model to correctly classify healthy cases as not lesions, i.e., the
probability that a lesion that is not a melanoma is classified as a nonmelanoma lesion.

2.3.2. Prognostic Module

In this section, a prototype advanced ML algorithm was designed to establish skin
cancer prognosis, having first defined two different objectives to predict disease-free sur-
vival (more or less than 5 years) and metastasis (yes or no). A dataset was available with
information from 196 patients and covering 28 attributes regarding clinical and experi-
mental data (see the attributes listed in Figure 2). The flowchart of the dataset is shown in
Figure S1. Different decision tree (DT) [22] algorithms and support vector machines (SVMs)
with different kernel functions (dot, radial, polynomial, neural, and ANOVA) [23] were
developed to define the best model to predict both metastasis and disease-free survival
(see Table S2 for a list and brief description of the algorithms used in this analysis). The
different processes and their associated subprocesses, as well as the models, were devel-
oped using RapidMiner software [24]. To train the models, a 10-fold cross-validation using
stratified sampling was obtained to test the ability of the ML algorithms to predict new
data efficiently [25]. The best model was obtained using the RapidMiner DT model, and the
parameters selected in each algorithm used in the prognosis module are shown in Table S3.

The metrics used from the machine learning analysis to predict metastasis and disease-
free survival were specificity (the proportion of patients predicted as no metastasis who
are actually no metastasis) and sensitivity (the proportion of truly metastatic patients in
the model relative to the actual metastatic patients in the data). In this case, we have also
included precision, as the ratio of the true metastatic patients in the model to the total of
the metastatic patients predicted by the model, and the F1 score, which accounts for both
precision and sensitivity; it is the harmonic mean (average) of the precision and sensitivity.

3. Results
3.1. AI for the Diagnosis of Primary Cutaneous Melanoma

As indicated above, two different AI models have been developed, and the lesion
classification model metrics based on clinical images are shown in Figure 4. The relationship
between sensitivity and specificity metrics enables the best cut-off threshold to be identified
(Figure 4A), and, as such, the three dashed vertical lines in blue defined in the graph
are the cut-off thresholds chosen from the comparative analysis (Figure 4A), whereby a
96.82% sensitivity and 75.41% specificity was obtained as the best “sensitivity cut-off”,
or 91.72% sensitivity and 91.72% specificity for the “sensitivity = specificity cut-off”, or
86.62% sensitivity and 93.44% specificity as the best “specificity cut-off” depending on
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the cut-off value (Figure 4B). This performance surpassed previously reported metrics of
clinicians’ assessments, demonstrating the relevance and importance of the information
provided by classical clinical images when analyzed using DL algorithms.
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Figure 4. Performance of the CDSS’s diagnostic module for the primary diagnosis of melanoma
based on clinical images. (A) Sensitivity (TPR) and specificity (TNR) were compared for the different
sensitivity thresholds. (B) Corresponding ROC curves of the classification models for the sensitivity
and specificity values reported in A.

On the other hand, when using dermatoscopy images, an average 84% sensitivity and
69% specificity was achieved by the model for the defined tasks. The model and imple-
mented approach are defined in detail in [21]. For the dermatoscopy model, the dataset
employed was more challenging as it included images with different types of illumination,
stickers, or pen marks on the lesions, rulers, etc.—elements that, to some extent, distract
the model from the targeted classification problem. Strategies to overcome these problems,
especially color correction methods, have been implemented in the proposed approach.
The more conservative results obtained with the model trained over dermatoscopy images
demonstrate the relevance of the macroscopic clinical features of the lesions identified
by the model trained over clinical images, suggesting that lesions should be evaluated
as a whole for better diagnosis. Both types of images seem to provide complementary
information, and modern DL approaches used to build hybrid models could be adopted
to improve the performance, adding more clinical information that describes the main
features of the lesions.

3.2. AI to Predict Metastasis and Disease-Free Survival

The performance of different models developed to predict if a patient will suffer
metastases during the follow-up or not was also assessed (Figure 5). Most of the models
displayed similar accuracy in terms of the proportion of correctly classified patients among
all the patients, and some of them had very good specificity, although those models with
very high specificity had very low sensitivity (Figure S2A). These models were random
forest DT and SVM algorithms with radial basis function as a kernel with 0% sensitivity,
and SVMs with a neural network as a kernel that displayed only 2% sensitivity. This means
that these models were not able to predict when patients develop a metastasis, probably
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due to the unbalanced datasets used in which there were many more patients without
metastasis (n = 131) relative to the metastatic patients (n = 65).
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Figure 5. The RapidMiner decision tree model used to predict the development of metastasis. (A) The
performance of the models obtained to predict the development of metastasis and the set of rules
are shown in Figure S2A,B: disease-free survival is expressed in months; the Breslow Index in mm;
L-BCL2+ represents the quantification of the intratumoral BCL2-positive lymphocytes expressed
as No (absence of BCL2+ intratumoral lymphocytes), Low (presence of a small number of BCL2+

intratumoral lymphocytes), and High (presence of a large number of BCL2+ positive intratumoral
lymphocytes); serum IL-4 is expressed in pg·mL−1. (B) The RapidMiner decision tree model trained
with the original 196 patients but without the attribute disease-free survival (see rules in Figure S3A).
The attributes used to predict metastasis are Breslow index, stage according AJCC, and IL-6-serum
levels in pg·mL−1.

According to the F1 score, the best model is that obtained using the RapidMiner imple-
mentation of the DT algorithm, with an 81% F1 score. This model achieved 74% sensitivity,
89% precision, and 88.24% accuracy (see the DT model in Figures 5A and S2).

Although RapidMiner DT is the best model to predict metastasis according to its F1 score,
other models have also a good F1 score as SVM with ANOVA as kernel (see Figure S2A) or
decision stump decision tree to predict metastasis in patients without metastasis at the time of
data collection (see Figure S1C). On the other hand, other models have very poor F1 score
and sensitivity as SVM with neural as kernel or random forest to predict metastasis in the 196
patients (see Figure S2A) or SVM with neural or radial kernel to predict metastasis in patients
without metastasis at the time of data collection (see Figure S2C).

A DT model is a tree-like model that serves as a decision support tool, visually
displaying decisions and their potential outcomes. The paths from the root to the leaves
represent classification rules; the red bar at the leaf is the proportion of patients with
metastasis, while the blue bar is the proportion of patients without metastasis. In the model
obtained, the first attribute evaluated is disease-free survival. If the value of this attribute
is less than 21.5 months, then the patient will be predicted to have had a metastasis with
a probability of 94.12% ((48/(48 + 3)) × 100). According to the model, the most relevant
attributes to obtain the rules are disease-free survival, Breslow index, L-BCL2+, and serum
IL-4 levels (pg·mL−1).

Furthermore, in order to obtain a model to use in a predictive way with newly di-
agnosed patients rather than to make a descriptive study of the available information
afterwards, a new model is trained with the original 196 patients using the RapidMiner
decision tree algorithm (since this has been the best algorithm in the two previous ap-
proaches), but without the disease-free survival attribute. For the model trained using the
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196 patients, the tree obtained is shown in Figure 5B (rules in Figure S3A). As can be seen,
the attributes used to predict metastasis in a patient are the Breslow index, AJCC, and IL-6
serum levels. Compared with the model using DFS, in this case, the performance metrics
decrease, although the accuracy of the model is 75%.

New models were obtained by selecting those patients without metastasis at the
time of data collection from the dataset of 196 patients (patients diagnosed as stage I and
II according to AJCC eighth edition). In order to conduct a useful and realistic study,
those with less than a two-year follow-up and no metastasis were removed from the
original dataset (196 patients) to avoid including patients for whom it was not yet clear
whether they will develop metastases because their disease-free time is so short. A total
of 47 patients were removed, obtaining a new dataset with 149 patients. The goal was
to obtain a model to predict if a patient will develop metastasis or not before the cancer
reached an advanced stage. When the same metrics were assessed as for the previous
models, the same algorithms (random forest DT, SVM with radial basis function as a kernel,
and SVM with neural function as a kernel) had 0% sensitivity (Figures 6A and S2C,D).
Again, this implies that these models predict all patients as no metastasis; therefore, the
models are not able to predict the development of metastasis. This is again probably due to
a lower proportion of patients without metastasis in the dataset (43 patients with metastasis
and 106 patients with no metastasis), as in the previous model with 196 patients.
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Figure 6. RapidMiner decision tree model to predict metastasis in early-stage melanoma patients
(stages I and II). (A) The performance of the models obtained to predict the development of metastasis
and the set of rules are shown in Figure S2C,D: disease-free survival is expressed in months; the
Breslow Index in mm; L-BCL2+ represents the quantification of the intratumoral BCL2+ lymphocytes
expressed as No (absence of BCL2+ intratumoral lymphocytes), Low (presence of small numbers
of BCL2+ intratumoral lymphocytes), and High (presence of large numbers of BCL2+ intratumoral
lymphocytes); and serum GM-CSF and IL-4 expressed in pg·mL−1. (B) The RapidMiner decision tree
model trained with the original 149 patients but without the attribute disease-free survival (see rules
in Figure S3B). The attributes used to predict metastasis are stage according AJCC Breslow index,
and IL-4 and IL-6 serum levels.

According to the F1 score, the best model was the RapidMiner DT, with a F1 score
of 73%, 87% accuracy, 63% sensitivity, and 96% specificity (Figure 6A). According to the
model, the most relevant attributes were the same as those in the previous model in
conjunction with GM-CSF serum levels, which did not appear in the previous model.
Moreover, the threshold values to generate the rules were also the same as in the previous
model (Figure S2D). From the model, it can be concluded also that for those patients with
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GM-CSF serum levels ≤250.7 pg·mL−1 and >10.7 pg·mL−1, metastasis development would
be predicted within the first 21.5 months after excision of the primary melanoma.

As before, in the case of patients diagnosed as stage I and II of AJCC, without metasta-
sis at the time of data collection, the model obtained is shown in Figure 6B, where AJCC,
Breslow index, and IL-4 and IL-6 serum levels are attributes used to predict metastasis. As
in the previous case, the performance metrics compared with the model with DFS decrease.
However, the Breslow index and IL-4 are attributes used by both models, which implies
that they are relevant variables in the metastasis.

3.3. Application

The Melanoma CDSS for skin cancer manages the security issues related to the ap-
plication (e.g., users, passwords, logs) and handles all the clinical information regarding
the hospital, doctor, lesions, patient, their visits, diagnosis, prognosis, etc., as well as the
relationships among these features, unifying all this information. The incorporation of
patient information can be achieved using an encrypted Excel file or directly through
the application itself. Thus, the Melanoma CDSS for skin cancer is an application with a
two-fold usage:

Diagnosis of skin lesion in the first clinical session with the patient. The Melanoma
CDSS will guide the dermatologist through the diagnostic module, which will show the
dermatologist all the clinical information stored in the clinical database, as well as all the
information from the image-based diagnostic module. The image diagnosis module will
show the tool’s predicted diagnosis and its accuracy.

Prognosis of a biopsied skin lesion after surgery. Once the patient has been diagnosed
with skin cancer and after surgery, the medical protocol determines a series of tests that
should be performed on the patient. Once this information is stored in the Melanoma CDSS,
the dermatologist can check the values and may also use the molecular-database-driven
prognostic module to obtain a prediction of the patient’s life expectancy. Like the image
diagnosis module, this tool will be used at the request of the clinician. The clinician may
also use the multiple-sources prognostic module to obtain additional information about the
patient’s predicted classification into one of various categories related to survival, gaining
information as to why the patient has been classified in this way, and regarding other
patterns and relationships through the relevant variables available in the dataset, and from
other patients (see Supplementary Figure S4 for screenshots from the Melanoma CDSS
application modules).

4. Discussion

Despite clinical staging guidelines, the heterogeneous nature of melanoma makes its
diagnosis and prediction challenging, even for experienced dermatologists. Indeed, the
wide range of morphologies among skin lesions makes it difficult to distinguish melanomas
from other pigmented skin lesions. The Melanoma CDSS presented here is a bioinformatics
application based on AI algorithms capable of extracting information that may be useful to
improve the diagnosis and prognosis of patients with cutaneous melanoma. It makes use
of clinical, demographic, and molecular data obtained by quantifying serum cytokines and
other histopathological biomarkers in melanoma biopsies from patients. The Melanoma
CDSS provides quick and insightful answers to clinician and user questions, presented in
an easy-to-understand visual format.

The initial evaluation of dermatological lesions, specifically melanomas, relies on
the identification of ABCDE features [26], whereby lesion asymmetry, borders, color, di-
ameter, and evolution are studied. Lesion features can be studied by eye or assisted by
dermatoscopy, but the final diagnosis relies on biopsy and histopathological diagnosis,
which takes 3 or 4 weeks to complete. For this reason, we have developed a computer-aided
diagnostic CADx tool to assist clinicians in the diagnostic procedure when examining a
lesion. The development of CADx applications in dermatology is an area of research
that has achieved significant relevance in recent years due to the increasing number of
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appointments in primary care and at dermatology units. The latest advances in AI, and
more specifically in DL, represent a landmark in modern medicine. Solutions based on
these tools have been seen to perform at an expert level [12,27], paving the way to adopt
such CADx solutions in clinical practice, and although there are still several challenges that
remain to be overcome [28], great progress continues to be made. As demonstrated here,
promising results can be obtained by applying DL tools to clinical and/or dermatoscopy
images [28,29]. As a result, we believe that feeding a combination of both these sources
of information into AI models can significantly improve their performance as they pro-
vide complementary information. DL strategies are continuously evolving, and they offer
improved performance and a new range of possibilities in biomedicine—for example, facil-
itating continued learning or the possibility to combine not only images but also clinical
and genomic or molecular data in hybrid/multi-source models.

Cutaneous melanoma is a genetically heterogeneous disease in which different patient
subgroups are associated with different outcomes. Bioinformatics tools have been widely
used to analyze Next Generation Sequencing (NGS) data in order to identify gene mutations
potentially associated with the etiopathogenesis of melanoma [30–32]. Moreover, the study of
the integrated properties of melanoma, its tissue microenvironment, and immune invasion is
guided by classical histopathology, while the profiling of protein or RNA expression in partic-
ular has revealed some molecular features associated with tumor development that involve
paracrine cytokine signaling [33,34]. Thus, the spatial landscape of primary melanoma progres-
sion is being enhanced by the use of multiplex analyses [35,36]. Clinical and histopathological
risk factors are widely used to define prognosis, for risk stratification, and to help achieve
personalized treatment for cutaneous melanoma. Systemic adjuvant therapies for stage III
and IV melanoma are now widely used following the surgical resection of the advanced
melanoma. However, adjuvant treatment is not usually recommended for stage I and II
melanoma, even though the mortality rate at 10 years may be relatively high [37]. Indeed,
in an analysis of the gene expression profiles of 523 primary melanomas, 70% of stage I and
II patients developed distant metastasis [34].

There are currently no well-validated or widely used melanoma risk stratification
tools. Here we present an inexpensive method based on histopathological and serological
biomarkers, information that, once fed into AI models, can be used to achieve an accurate
diagnosis and a precise prognosis at early stages of melanoma. Moreover, our predictive AI
analytics may help oncologists make treatment decisions. Along with the Breslow thickness,
the Melanoma CDSS includes features such as the relative number of tumors infiltrating L-
BCL2+ and serum levels of IL-4 or IL-6, all of which have been reported to be important risk
factors for melanoma progression [9]. The Breslow thickness alone has been considered a
malignant risk factor [34], but an important increase in the predictive power of the Breslow
Index was achieved by combining it with data regarding infiltrating L-BCL2+ and serum
levels of IL-4 and GM-CSF. Models obtained using RapidMiner DTs show that the Breslow
index, infiltrating L-BCL2+, and IL-4 levels are associated with a poor prognosis, whereas
a decrease in GM-CSF serum levels directly identifies early-stage melanoma patients in
whom the disease-free survival is less than 21.5 months. However, the mentioned models
use DFS as a main predictive attribute, so their clinical use is limited. Metastasis prediction
models where DFS has not been considered have potential for real clinical use and show
that Breslow index, stage, and serum levels of IL-4 and Il-6 are markers of poor prognosis.
Although the performance metrics decrease compared with the initial models including
DFS, Breslow index, and IL-4 keep as attributes used in both models, which implies that
they are relevant variables in metastasis development. The melanoma microenvironment
contains stromal cells and immune cells, such as T- or B-lymphocytes, NK cells, or tumor-
associated macrophages that can secrete cytokines and that might play a role in inhibiting
or promoting tumor progression [32]. The activation of infiltrating lymphocytes could
be analyzed by determining the expression of certain antigens using specific monoclonal
antibodies. Surprisingly, BCL-2 expression was detected here in both melanoma cells
and in the tumor-infiltrating lymphocytes. Moreover, the algorithm revealed that the
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expression of BCL-2 in the melanoma-infiltrating lymphocytes constitutes an important risk
marker to predict metastasis. BCL-2 is an anti-apoptotic member of the B-cell lymphoma-
2 family of proteins [38]. Lymphocytes with high BCL-2 expression could be reflecting
the activation or a proliferative state of these cells, and in lymphoma BCL-2 expression is
considered a potential marker of poor prognosis [39]. In the melanoma microenvironment,
it remains unclear if the presence of infiltrating lymphocytes is associated with a good or
bad prognosis [40]. Infiltrating lymphocytes are a functionally heterogeneous group of
cells that could differentiate to induce an anti-tumor response or to inhibit the immune
response against melanoma cells [41]. In the group of melanoma patients studied, although
the phenotype of the infiltrating lymphocytes was not determined, a high number of
infiltrating L-BCL2+ and levels of IL-4 > 48.5 pg·mL−1 are associated with metastatic
progression (86.82% accuracy), suggesting that an immunosuppressive response is being
induced in melanoma cells.

Finally, GM-CSF is a hematopoietic growth factor that fulfills a fundamental role in
macrophages and granulocyte differentiation and that has been described as a promotor [42]
or inhibitor [43] of tumor progression. Although we did not find significant differences
in the number of infiltrating macrophages in melanoma biopsies here, the results are
consistent with studies describing an anti-tumor activity of GM-CSF [44], albeit exclusively
in the early stages of melanoma. Thus, a decrease in GM-CSF serum levels in patients with
stage I and II melanomas appears to be associated with the development of metastasis.

To summarize, sensitive and accurate models can be obtained using different al-
gorithms and two different datasets: one with a total 196 patients, and the other with
149 patients after removing the patients with less than a two-year follow-up who were
nonmetastatic at the time of diagnosis. In both cases, the best results are obtained using a
RapidMiner DT algorithm, and similar trees with some equivalent rules were used in both
models to achieve prognosis and to predict metastasis. The most accurate and sensitive
model is obtained with the dataset containing all 196 melanoma patients, and both models
predict metastasis (that with all patients and with patients with early-stage melanoma)
based on the attributes of Breslow thickness, infiltrating L-BCL2+, and serum IL-4 and
IL-6 levels. Importantly, a decrease in serum GM-CSF levels seems to be a marker of poor
prognosis only in patients with early-stage melanoma.

5. Conclusions

Cutaneous melanoma is a heterogeneous neoplasia with many patient subgroups
essentially established on the basis of the appearance of metastases during follow-up.
AI solutions for melanoma diagnosis have been designed here and, importantly, to also
predict the appearance of metastasis in early-stage melanoma patients. Along with Breslow
thickness, infiltrating L-BCL2+, and serum IL-4, IL-6 and GM-CSF levels appear to be
relevant risk factors for melanoma progression.

6. Patents

European patent No. EP3051291 (EP14796149.4). “Method for diagnosis and prognosis
of cutaneous melanoma”. University of the Basque Country (UPV/EHU).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15072174/s1. Figure S1: Flow chart of prognosis module.
Figure S2: Performance of the models obtained to predict metastasis. (A) Performance of the
metastasis models obtained from the complete dataset of melanoma patients. (B) RapidMiner decision
tree model and set of rules applied to the same group of patients (Figure 5A). (C) Performance of
the metastasis models obtained with the early-stage melanoma patients (stages I and II, according
to AJCC). (D) RapidMiner decision tree model and set of rules with the same group of patients as
in (C) (Figure 6A). Figure S3: RapidMiner DT models obtained to predict metastasis in the same
group of patients. (A) RapidMiner DT model and set of rules applied to the group of patients without
DFS attribute (N = 196) (Figure 5B). (B) RapidMiner DT model and set of rules applied with the
early-stage melanoma patients (stages I and II, according to AJCC) without DFS attribute (N = 149)

https://www.mdpi.com/article/10.3390/cancers15072174/s1
https://www.mdpi.com/article/10.3390/cancers15072174/s1
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(Figure 6B). Figure S4: Screenshots from the Melanoma CDSS application. Table S1: Summary of
the bioinformatics and machine learning studies of risk factors included in the Melanoma CDSS.
Table S2: Summary of the algorithms used in the prognosis module of the Melanoma CDSS. Table S3:
Parameters selected in each algorithm used in the prognosis module of the Melanoma Clinical
Decision System.
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