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Introduction 

A network is highly modular when different communities of nodes have high intra-
connectivity within them and low inter-connectivity between them. Different methods 
and strategies have been used to maximize modularity in brain networks, see for 
instance [1] and references therein, resulting in a list indicating which node belongs to 
which community.  Despite some strengths and weaknesses between the different 
methods, most of them start from a connectivity matrix that defines pairwise 
interactions between network nodes. Following previous work [2]–[4], we built here 
connectivity matrices defining node high-order interactions, from triplets to n-plets, and 
compared different communities obtained across different modularity methods.    

Methods 

K = 86 healthy subjects from the Human Connectome Project (HCP), all of them were 
healthy unrelated subjects, 43 females, with a mean age of 28,28 years (σ=3,6 years). 
Resting-state fMRI data was pre-processed with the ICA-FIX pipeline provided by HCP. 
We extracted M = 32 region-level time-series of the different 8 resting-state networks  
(RSNs) incorporated into the CONN platform [5], namely, Default Model Network 
(DMN), Sensory-Motor Network (SMN), Visual Network (VN), Salience Network (SN), 
Dorsal Attention Network (DAN),  Fronto-Parietal Network (FPN), Language Network 
(LN) and Cerebellear Network (CERN). We first calculated the O-information that 
accounts for high-order interactions in n-plets of regions [2], and particularized for 
subsequent analyses to n=3, i.e. the high-order interactions in triplets, also known as 
interaction information [6], [7]. If the value of the O-information is greater than 0, the 
interaction in the triplet is said to be redundant, and, if it is lower than 0, it is said to be 
synergetic. Next, we built connectivity matrices Cm for each value of m by defining: 

𝐶! ≡   𝜆 ∗ 𝑅! + 1 − 𝜆 ∗ 𝑆! (Eq. 1) 



where λ is a free parameter and Rm and Sm are respectively the redundancy and the 
synergy in the triplet interaction between any two regions when interacting with region 
m. Notice that we have a different connectivity matrix Cm for each value of m. Eq. (1) 
allows to parametrize different nature of high-order interactions by tuning the parameter 
λ, eg., Cm = Sm for λ=0, Cm = Rm  for λ=1, while competing  redundant and synergetic 
interactions exist for λ values between 0 and 1. Finally, when considering each region 
m=1,..., M as one possible node in the network, and using different maximization 
algorithms, the modularity of different interacting networks Cm is maximized, e.g., using 
the Louvain algorithm,  and the different resulting communities are discussed.  

We also made use of different network partitions such as the Brain Hierarchical 
Atlas[8], Desikan[9] and Schaefer[10] .  

Results 

The submitted figure illustrates different scenarios. For M=32 regions defined in the 
partition of the CONN RSNs, Fig 1A illustrates the pairwise functional connectivity 
matrix obtained for comparison purposes. Figs 1B-C show average across subjects 
and regions of the different matrices Rm and Sm. We have obtained different network 
communities in the different scenarios, comparing different methods and using different 
atlases.  We also analysed a continued parameterization depending on λ, and assess 
the participation that different brain regions play across different communities. 

 

 

Discussion  

High-order interactions in the human brain reveal undetectable relations by pairwise-
interaction strategies. The study assesses the modular structure of the space 
governing those high-order interactions. 
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