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Open datasets and code for  
multi-scale relations on structure, 
function and neuro-genetics in the 
human brain
Antonio Jimenez-Marin1,2, Ibai Diez   3,4,5, Asier Erramuzpe   1,6, Sebastiano Stramaglia7, 
Paolo Bonifazi1,6 & Jesus M. Cortes   1,6,8 ✉

The human brain is an extremely complex network of structural and functional connections that 
operate at multiple spatial and temporal scales. Investigating the relationship between these multi-
scale connections is critical to advancing our comprehension of brain function and disorders. However, 
accurately predicting structural connectivity from its functional counterpart remains a challenging 
pursuit. One of the major impediments is the lack of public repositories that integrate structural and 
functional networks at diverse resolutions, in conjunction with modular transcriptomic profiles, which 
are essential for comprehensive biological interpretation. To mitigate this limitation, our contribution 
encompasses the provision of an open-access dataset consisting of derivative matrices of functional and 
structural connectivity across multiple scales, accompanied by code that facilitates the investigation 
of their interrelations. We also provide additional resources focused on neuro-genetic associations of 
module-level network metrics, which present promising opportunities to further advance research in 
the field of network neuroscience, particularly concerning brain disorders.

Introduction
The precise relationship between brain structural and functional connectivities has puzzled leading researchers 
in network neuroscience1–16. Despite numerous efforts, an accurate prediction of the structural connectivity 
from its functional counterpart remains still a distant goal. Beyond link-level network comparisons between the 
two modalities, a modular-level comparison has shown bi-directional advantages in the understanding of brain 
structure and function17–29. Although non-invasive magnetic resonance imaging (MRI) techniques have a limi-
tation in the network resolution that they can resolve30, arriving at about one millimeter resolution, multi-scale 
approaches between brain structural and functional modules have been studied to assess organizational aspects 
in healthy population13,26,31–33, in relation to cognition34,35, during development36 and aging37, or in some patho-
logical conditions38,39.

When evaluating the correspondence at the module-level (also known as aggregate level) between structure 
and function, there are two complementary strategies in relation to the chosen network resolution. One is the 
optimal strategy, in which a fixed level of network representation is established, for example, maximizing a 
certain network metric40–45. Therefore, this optimal solution depends on the chosen metric which we have opti-
mized to cut the hierarchical tree at a given level. The alternative approach explores the multi-scale nature of the 
data, using a nested hierarchy of network resolutions as potential features or input variables to be synergistically 
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integrated to address a specific problem35,37,39,46. Therefore, for the multi-scale strategy, brain networks at differ-
ent resolutions are combined, and the problem in question is solved without setting any resolution level in the 
hierarchical tree.

While progress has been made in assessing the module-level correspondence between structural and func-
tional connectivities in the human brain, many questions remain unanswered. Among these inquiries, it is 
important to assess the extent to which the different modules within structural connectivity favor the emergence 
of functional modules. Moreover, it is crucial to investigate the presence of dynamic processes that influence 
the relationship between structural and functional modules. Identifying the scale at which the correspondence 
between modules in both representations reaches a maximum is also of great relevance. Understanding the 
insights of the pathological brain and the extent to which the interplay between structure and function is altered 
within this context are pressing matters. Additionally, elucidating the underlying mechanism responsible for 
such alterations is crucial.

In the pursuit of addressing these queries, there are brain data repositories like the Human Connectome 
Project47, which offers functional connectivity matrices and diffusion data, yet lacks diverse structural connec-
tivity matrices at varying resolutions. Another repository, MICA-MICs48, more closely resembles our database, 
providing 50 structural and functional connectivity matrices across several resolutions. The latest database, uti-
lizing data from the UK Biobank49, contains 40,000 connectomes from healthy individuals. However, its access 
is somewhat restricted, as it is part of the UK Biobank database and requires payment for access. Our dataset’s 
distinctiveness lies in its inclusion of multiscale structural-functional modules (γ-parametrized) and associated 
gene transcriptomic profiles.

This study aims to address this need by providing derivative functional and structural connectivity matri-
ces at different scales and code to the scientific community, enabling progress in addressing these questions, 
which constitute a central focus of research in our laboratory. Specifically, in this article, we initially introduce 
a modeling approach to investigate the interplay between structure and function by parameterizing the degree 
of overlap between the two classes of connectivity. Secondly, building upon the methodology described in24, we 
extend it to examine the module-level correspondence between the two connectivity matrices. Finally, we have 
extended the study on the relationship between brain structure and function by sharing also neuro-genetic code 
and data, delving into the underlying biological and molecular foundations of brain-related disorders, similarly 
to previous work50–60. We aimed to bridge the gap between transcriptomics and connectomics, particularly for 
those skilled in network analysis but not in data handling. This objective has been our primary drive.

Results
Structural and functional connectivity matrices at various resolutions were built making use of brain images 
from the open dataset “Max Planck Institut Leipzig Mind-Brain-Body Dataset” – LEMON61,62, well-known for 
having high-quality multimodal acquisitions and preprocessed MRI sequences. Rather than using different sub-
jects across lifespan, we specifically selected 136 young participants, aged between 20 and 30 years old, who 
had both the preprocessed rs-fMRI sequence and DWI sequence available. We next processed the raw images 
following standard neuroimaging pipelines to obtain structural connectivity (SC) and functional connectivity 
(FC) matrices (Fig. 1A). Subsequently, we built population connectivity matrices by choosing, for each link in 
the matrix, the median value across all the equivalent links in the individual connectivity matrices. Finally, we 
modeled the amount of interplay between structure and function connectivities using a single fusion parameter, 
γ. When γ equals 0 or 1, we have purely structural or functional connectivity, respectively. In intermediate situ-
ations, the amount of overlapping connectivity is modulated by γ. Furthermore, and similar to the methodology 
described in24, for each value of the fusion parameter γ, we applied hierarchical agglomerative clustering to the 
resulting γ-fused structure-function matrix, γSFC (Fig. 1B).

Optimal γ-fused structure-function modular organization.  The different trees of the γSFC matri-
ces describe distinct scales, enabling the construction of networks at different resolutions. The determination 
of the optimal partition by cutting the tree at M* modules depends on the specific metric we seek to maximize. 
In order to showcase the versatility of our data with various metrics, we specifically concentrate on a metric we 
have previously defined24 and named cross-modularity χ, defined as the triple product of the modularity of the 
functional matrix, the modularity of the structural matrix, and the similarity between structural and functional 
modular configuration.

Here, we aimed to maximize χ to select the optimal value of γ for a given initial parcellation atlas (iPA). 
Figure S1 shows box-plots of different values of the cross-modularity χ across different dendrogram levels and 
for different iPAs with different size, ie., varying the number of micro-regions ranging from 183 to 2165. For 
further analyses, we selected the iPA with 2165 micro-regions since it exhibited a higher mean cross-modularity 
value together with a lower variability within a wide range of scales, particularly within the first 120 levels where 
the maximum χ is located. Beyond this point, there was a decreasing trend. The optimal brain partition corre-
sponds to the iPA that maximizes χ by reducing the dendrogram to M* modules and setting the fusion param-
eter to γ*. In our case, the optimal value γ* was determined to be 0.7, and this occurred at the level of 28 modules. 
However, two modules were considered invalid as they consisted of only one and two micro-regions, respec-
tively, making it impractical to analyze the community structure within them. Henceforth, any subsequent anal-
ysis referring to the optimal brain partition will be based on the iPA that maximizes χ by reducing the 
dendrogram to M* = 26 modules and setting the fusion parameter to γ = .∗ 0 7.

Multi-scale γ-fused structure-function modular organization.  As an illustrative example, and to 
gain a deeper understanding of how the multi-scale organization is influenced by γ, we investigated the network 
strength of the γSFC matrix in two network representations. At the finest spatial resolution, corresponding to the 
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lowest level in the hierarchical tree consisting of 2165 micro-regions (represented as brain maps in Fig. 2A), and 
for each of the macro-regions, including the frontal lobe, parietal lobe, occipital lobe, temporal lobe, insula, and a 
collection of subcortical areas (Fig. 2B). From both analyses, it is evident that increasing γ, transitioning from 
structure (γ = 0) to function (γ = 1), results in higher strengths shifting from subcortical areas to cortical regions. 
This pattern is observed consistently across all macro-regions, where the strength progressively increases with γ, 
peaking around 0 7γ ≈ . .

Beyond the two selected levels of resolution for calculating strength, a hierarchical tree organization ena-
bles obtaining different metrics at different module-levels. For instance, we first colored the M* = 26 distinct 
modules of the optimal brain partition for ease of visualization (Figure S2, top panel). Some tree metrics we 
computed were the module size (MS), height (H), and multi-scale index (MSI). Very briefly, MS represents 
the count of micro-regions encompassed within a module. MSI quantifies the number of levels within the tree 

Fig. 1  Methodological sketch and pipeline. (A) Participants’ raw MRI data from N = 136 healthy volunteers 
of the MPI-LEMON dataset were used. From preprocessed rs-fMRI images, we generated an initial brain 
parcellation using gray-matter masks and the open repository pyClusterROI. Subsequently, we employed 
our own publicly available code on GitHub to process the DWI images and extract the SC matrices. All post-
processed data at the participant level, including the time series BOLD signal corresponding to the different 
iPAs, and the SC and FC matrices are available at https://zenodo.org/record/8158914. (B) We calculated 
population SCp and FCp matrices, and subsequently generated γ-fused matrices as described in the methods 
section. The γSFC matrices were used to construct dendrogram trees for different γ parameters. Additionally, 
we employed abagen to generate transcriptomic expression matrices for various tree-based parcellations. The 
transcriptomic matrices and dendrogram trees are also accessible on Figshare. The entire pipeline and project 
codes can be found on GitHub at https://github.com/compneurobilbao/bha2.
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structure where a module remains intact without further division. H denotes the specific level at which a given 
micro-region separates from its parent module. Therefore, while H is defined for each micro-region, MS and 
MSI are defined at the module-level. We also defined the module height (MH), by averaging over all individual 
H values within the given module (Figure S2, full dendrogram and dendrogram-inset). We represented these 
metrics on brain plots, where we observed distinct patterns for each module (Figure S2, brain plots).

We conducted further analyses to examine the correlations among these metrics and the intra-module 
strength, as a proxy for module segregation (Figure S3). From the different tree measures, both MS and 
MH showed a high correlation (r = 0.95, p < 0.001) with module segregation, as well as between themselves 
(r = −0.84, p < 0.001). Interestingly, the first module M1 was an outlier in the metric of MSI. Located at the 
border between the Precuneus, Isthmus Cingulate, and Posterior Cingulate cortices (Fig. 3), M1 showed a 
remarkable resilience in remaining intact without splitting across multiple levels in the tree, possibly indicating 
a multi-scale functional role.

Anatomical and functional description of a given brain partition.  Our methodology for defining a 
given partition defined by specific values of M and γ is generally data-driven. At some point, it may be of interest 
to characterize the anatomical and functional properties of a specific partition. As an illustrative example, we 
made use of the optimal partition with M* = 26 modules and γ = .∗ 0 7 and determined the spatial locations of 
these 26 modules within the brain (Fig. 3, brain-glasses). We next obtained their functional and anatomical char-
acterization by measuring respectively the amount of overlap within known Resting State Networks (RSNs)63 and 
regions from the Desikan-Killiany atlas64, the latter consisting of 34 cortical regions (in right and left hemi-
spheres), 8 subcortical regions segmented from Freesurfer, and the cerebellum (Fig. 3, heatmaps). Several of our 

Fig. 2  Graph-node strength is modulated by γ, the amount of interplay between structural connectivity (SC) 
and functional connectivity (FC). (A) Brain maps of graph-node (normalized) strength. It is observed that for 
γ = 0 (pure SC), high strengths are predominantly localized in subcortical regions. However, as γ varies, there is 
a decrease in strength within these regions and an increase in cortical regions. (B) Box plots for the distribution 
of graph-node strength across different macro-regions: Frontal lobe, Parietal lobe, Temporal lobe, Occipital 
lobe, a collection of Subcortical areas, and Insula. Notably, for each macro-region, the strength shows an 
increasing trend from γ = 0, reaching a peak at γ ≈ .0 7, followed by a subsequent decrease.

https://doi.org/10.1038/s41597-024-03060-2


5Scientific Data |          (2024) 11:256  | https://doi.org/10.1038/s41597-024-03060-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

modules exhibited strong overlapping within the RSNs. For instance, module M6 encompassed the Somato-motor 
Network (SMN) while also integrated parts of the Dorsal and Ventral Attention Networks (DAN, VAN). Module 
M18 showed an overlap with a portion of the Default Mode Network (DMN), and module M14 did it with the 
Visual Network (VIS). Moreover, certain modules displayed high overlapping with specific anatomical regions. 
For example, module M20 included the medial and lateral Orbitofrontal cortices, while module M26 integrated 
the Basal Ganglia and Thalamus.

Neurobiological relevance of a given brain partition in brain-related disorders by making use of 
neurogenetics data.  Essential for a comprehensive biological interpretation is characterize the modules of 
a given partition based on their participation in major brain-related disorders. To accomplish this, we focus again 
on the optimal partition and made use of publicly available transcriptomic data from the Allen Human Brain 
Atlas (AHBA)50, and constructed transcriptomic expression matrices at module-level (Fig. 1B). In particular, we 
examined the transcriptomic expression within each module for genes associated with 40 different brain-related 
disorders, using a list of disorders and their corresponding genes extracted from the available data in65.  
For each disorder, the average expression across samples within a module was computed for the relevant genes, 
and z-score values were then calculated based on the optimal partition (Fig. 4, heatmap). Modules with a 
z-score > 2, indicating high expression levels, or z-score < −2, indicating low expression levels, were marked 
with an asterisk. As the disorders were categorized into 7 disease groups (Psychiatric disorders, Substance abuse, 
Movement disorders, Neurodegenerative diseases, Tumor conditions, Developmental disorders, and Others), we 
also generated a z-score map representing the average expression of all genes associated with each disease group 

Fig. 3  Brain localization, Functional description and Anatomical description of the optimal brain partition. 
Left: The different M1 to M26 modules belonging to the optimal brain partition are depicted within brain 
representations for localization purposes. Right: Additional information is provided regarding the specific 
location of each module, incorporating anatomical details and functional representations derived from the 
overlapping analysis among different modules and established Desikan-Killiany and Resting-State Network 
(RSN) atlases.
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(Fig. 4, brain-glasses). Modules M3 and M26 exhibited high relevance across multiple disorders. M26 represented 
a subcortical circuit encompassing the Basal Ganglia and Thalamus, while M3 represented a Thalamo-cortical 
circuit comprising a portion of the right Thalamus, a small segment of the right Putamen and Pallidum, and the 
right Caudal Middle Frontal, Superior Frontal, and Precentral gyri. M14 was relevant for 7 disorders and included 
the Occipital pole and the Medial Visual Cortex. Lastly, M8 displayed relevance in 6 disorders and represented a 
circuit connecting the Amygdala and Hippocampus with the Precuneus via the Parahippocampal and Isthmus 
Cingulate cortices.

Discussion
In the words of Karl Friston, how rich functionality emerges from the invariant structural architecture of the 
brain remains a major mystery in neuroscience7. Previous research in network neuroscience has provided evi-
dence for the emergence of hierarchical network modularity, facilitating the separation of neural computations 
at various spatial scales13,18,21,26,31–34,36,38. However, the specific role played by structure in functional organiza-
tion, as well as the reciprocal influence, remain elusive. A key contributing factor to this gap in knowledge is 
the continuous interaction that takes place across multiple temporal and spatial scales30. Consequently, when 
employing a particular imaging modality for measurement, obtaining a comprehensive understanding of the 
intricate interplay between different scales becomes challenging.

For many years, our laboratory has been investigating the interplay between structure and function at the 
module-level. In our initial work 8 years ago24, we demonstrated excellent correspondence among modules, but 
not at the level of links in connectivity matrices. Since then, we have expanded our research to include studies on 
healthy brains35,42,44 and pathological brains37,39–41,43,45,46, exploring the multi-scale structural-functional corre-
spondence at the module-level. Through collaborations with other groups, we have identified a lack of clear open 
data and repositories that facilitate this line of research. Many research groups in the field of physics and mathe-
matics, specializing in complex network methodology, lack access to preprocessed brain networks derived from 
raw neuroimaging data. Motivated by this gap, our study aims to address this issue by employing state-of-the-art 
neuroimaging analyses, offering structural and functional networks at different scales, with both networks built 

Fig. 4  Neurogenetic module-level data for disease-related transcriptomic characterization of the optimal brain 
partition. Left: Within each module of the optimal brain partition (M1 to M26, x-axis), we depict the median 
transcriptomic expression values across different sets of genes associated with various brain-related disorders. 
Modules with significantly high/low expression values compared to the rest are denoted by a white asterisk 
(*). Notice that only specific modules among the 26 exhibited significant expression values. Notably, modules 
encompassing the basal ganglia and thalamus (M3 and M26) demonstrated significance across all disease 
groups. Right: Brain maps of median transcriptomic expression, averaged over different maps belonging to the 
same group of brain disorders. Left, Right: Z-scores were calculated across all the modules to indicate a relative 
high/low gene expression levels across modules.
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using the same set of network nodes. Not only do we provide the final connectivity matrices, but also the code to 
generate them. Additionally, we introduce hybrid structure-functional networks through the parameterization 
of their overlap using the parameter γ. Furthermore, we have also released pre-processed neurogenetic data 
and code, to facilitate the connection between structural-functional correspondence across different scales and 
underlying biological mechanisms, opening up a promising avenue for studying brain disorders.

The structure of the released data, code and analyses are as follows:

•	 All preprocessed structural and functional connectivity matrices, transcriptomics data, and γ-dendrograms 
for the different iPAs have been uploaded to (https://zenodo.org/record/8158914)66.

•	 The code to build γ–dendrogams is available at https://github.com/compneurobilbao/bha2/blob/main/src/
build_tree.py.

•	 All notebooks needed to reproduce all figures of this manuscript are available at https://github.com/
compneurobilbao/bha2/tree/main/notebooks

Our choice to build brain partitions was based on the pyClusterROI package67 rather than using other exist-
ing parcellations68,69. This decision was driven by two primary factors. Firstly, it allows for a gradual increase 
in the number of ROIs across different scales. Notably, in our cross-modularity analysis (see Figure S1), we 
observed higher values for parcellations with more than 1000 ROIs. This suggests that, particularly for the 
metric of cross-modularity, there could be more optimal parcellations beyond 1000 ROIs (which is the maxi-
mum resolution provided by other parcellations eg. Schaefer’s69). This possibility might extend to other metrics, 
prompting us to retain this feature in our code. Secondly, and crucially for us, our choice included subcortical 
ROIs alongside cortical ones. This is particularly important in the study of brain pathologies, as many diseases 
impact subcortical regions in their early stages, and later on, in more severe stages.

In this manuscript, which aims to be a practical guide for studies using functional and structural connectivity 
matrices at different resolution scales, and their neurogenetic associations in relation to some brain pathologies, 
we have performed specific analyzes that resulting in four different figures. Firstly, Fig. 1 presents a methodo-
logical overview of the various datasets and key steps involved in our analyses. Figure 2 aims to demonstrate 
the continuous parametric effect of γ on different network metrics, and for that, we have depicted the distri-
butions of node-graph strength at two different spatial resolutions. One resolution encompassed 2165 distinct 
microregions, while the other aggregated them into six distinct macro-regions covering the entire brain: Frontal 
lobe, Parietal lobe, Temporal lobe, Occipital lobe, a collection of Subcortical areas, and Insula. Figure 3 depicts 
a widely accepted strategy employed in neuroimaging studies for the comprehensive characterization of a spe-
cific brain partition, encompassing both functional and anatomical labels for each brain region. Finally, Fig. 4 
shows how gene transcriptomic imaging data can be used to characterize a given partition (in our example, the 
same partition chosen for Fig. 3) in relation to a set of genes with significant associations in 40 different brain 
disorders. These disorders are grouped into various categories such as psychiatric disorders, substance abuse, 
movement disorders, neurodegenerative diseases, tumor conditions, or developmental disorders.

To summarize, with this study we aim to provide valuable resources in the form of dataset-derivative func-
tional and structural connectivity matrices at different scales and code to facilitate the exploration of the intri-
cate interplay between brain structure and function across diverse spatial scales, including the aggregated level. 
It is our intention to contribute to unraveling the enigmatic nature of this structure-function relationship, which, 
despite significant progress, still harbors substantial gaps in our understanding. We encourage other researchers 
with an interest in this area to make use of the resources presented here to further contribute to the elucidation 
of this fascinating phenomenon.

Material and Methods
Raw neuroimaging dataset.  The Max Planck Institut Leipzig Mind-Brain-Body Dataset, commonly 
referred to as LEMON61,62, is a comprehensive multimodal dataset encompassing MRI sequences, EEG, ECG, 
and behavioral scores. In this study, we focused on a subgroup of N = 136 healthy individuals within the age range 
of 20 to 30 years, with a male population comprising 98 individuals (72%). The selection of young individuals 
stems from existing research indicating age’s influence on both structural and functional network connectivity37.  
For more considerations about sex-bias affecting the analyses, see subsection sex bias considerations below. For the 
precise selection of the IDs individuals, see https://zenodo.org/record/8158914/files/participants.tsv. Specifically, 
for this study we made use of three different MRI sequences: T1, rs-fMRI, and DWI, with the aim of extracting 
functional and structural connectivity matrices. For a comprehensive description of the sequences employed, 
please refer to Table 7 in61.

Preprocessed neuroimaging dataset.  LEMON also provides access to preprocessed data. In our study, 
we made use of the brain-extracted T1 and rs-fMRI images as input data for further analysis. For preprocessing 
DWI images, we made used of a custom pipeline utilizing the the brain-extracted T1 images, MRtrix3 ( .v RC3 0_ 3), 
FSL (v6.0.1), and ANTs (v2.3.1). Our DWI pipeline involved cleaning the raw images using DWIdenoise and 
DWIpreproc tools, which included correction for eddy current distortion and susceptibility-induced distortion 
using the topup tool. Next, we performed whole-brain probabilistic tractography using the iFOD2 tracking algo-
rithm in MRtrix3. The tractography was initiated from seeds located at the gray matter-white matter interface, 
with a selection of 3 million fibers based on an angle threshold of <45° and a length threshold of <200 mm, fol-
lowing the recommendations in the MRtrix3 documentation. The tool SIFT270 was used to correct for the effect 
of crossing and disconnection of fibers on the quantification of the total number of streamlines.
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Data-driven anatomical and functional solutions for different initial brain partitions.  Following 
a methodology similar to24, and utilizing the preprocessed rs-fMRI images, we performed an unsupervised 
voxel-level clustering analysis to delineate a specific number of micro-regions following the strategy proposed in67.  
These micro-regions define the highest spatial resolution scale employed for subsequent analyses. In contrast to24, 
where all brain voxels were included into the same clustering process, our methodology here involved six separate 
clustering procedures, each one focused solely on the voxels contained within distinct macro-regions, namely 
the frontal lobe, parietal lobe, occipital lobe, temporal lobe, insula, and subcortical structures (pooling together 
the thalamus, basal ganglia, amygdala, and hippocampus). Thus, while a functional partition was applied, the 
resulting regions were anatomically constrained by the defined macro-regions. By aggregating all micro-regions 
obtained from the six different macro-regions, we generated an initial Parcellation Atlas (iPA). We followed the 
same procedure to generate 9 different iPAs, each consisting of a different number of micro-regions, specifically 
183, 391, 568, 729, 964, 1242, 1584, 1795, and 2165.

Brain functional and structural connectivity matrices, and their fusion through the para
meter γ.  FC matrices were generated by computing the Pearson correlation between pairs of regions fMRI 
time-series, each one obtained by averaging voxel-wise fMRI time-series within each micro-region within a spe-
cific iPA. For SC matrices, we employed the tck2connectome tool to perform fiber counting of the streamlines 
connecting pairs of micro-regions in the iPA. Prior to constructing SC, a nonlinear registration of the iPA to the 
b0 image of the DWI sequence was performed.

From the individual SC and FC matrices, we computed population matrices SCp and FCp by calculating for 
each link the median value across all equivalent links in the individual matrices. Next, and to match the sparse 
nature of SCp, a threshold was applied to FCp, resulting in comparable link density. Subsequently, we binarized 
the two matrices and fused them into a single matrix as follows:

γ γ γ≡ × + − ×SFC FC (1 ) SC ,p p

where γ is a real number between 0 and 1. This strategy allows us to continuously parameterize the level of inter-
play between SCp and FCp, enabling the recovery of each connectivity class when γ = 0 or γ = 1, while obtaining 
hybrid connectivities for intermediate values.

Multi-scale hierarchical representation at module-level.  For each of the 9 distinct iPAs, a hierarchical 
agglomerative clustering (HAC) was employed to extract different nested modules, allowing to build different 
network resolutions at different scales (each one determined by a cutting tree number of modules M). More 
specifically, HAC was performed using a weighted method on the connectivity patterns obtained from the matrix 
γSFC, here defined as the correlation distance between pairs of micro-regions in the γSFC matrix.

Within the context of tree or dendrogram partitions, different multi-scale metrics can be established. These 
metrics can be defined either at the module-level or at a more granular level (with the highest spatial resolution 
determined by the micro-region level). In this particular study, we have defined the module size (MS), represent-
ing the count of micro-regions encompassed within a module. Additionally, we have introduced the multi-scale 
index (MSI), which quantifies the number of levels within the tree structure where a module remains intact 
without further division. In relation to micro-regions, we have selected the height (H) metric, which denotes the 
specific level at which a given micro-region separates from its parent module.

The optimal brain partition based on cross-modularity maximization.  After obtaining a hierarchi-
cal partitioning of the connectivity matrix, clustering micro-regions into distinct modules M, the determination 
of the optimal level for cutting the tree depends on the specific metric being optimized. In this study, following the 
methodology introduced in24, the metric chosen for maximization is the cross-modularity χ, defined as:

Q Q T( )F S FS
1
3χ ≡ × ×

This metric simultaneously accounts for three different qualities: the modularity of the functional matrix 
(QF), the modularity of the structural matrix (QS), and their similarity (TFS). The latter is defined as the DICE 
similarity between a functional module and a structural module, and averaging across all modules in the given 
partition. By varying M along the tree, we can calculate χ for each configuration M and select the optimal 
partition M* where χ is maximized. Additionally, unlike the approach in24, we here have introduced a second 
parameter γ* in the maximization of χ, which controls the amount of structure-function interplay.

Transcriptomic data at module-level to assess brain-related disorders.  In addition to multi-scale 
brain partitions and structure-function analysis, we processed the transcriptomic open data from the Allen 
Human Brain Atlas (AHBA)50 by using the abagen tool57, with the default settings, which follow the recommen-
dations of53. Notably, this included setting the ibf_threshold to 0.5, ensuring inclusion of genes where sample 
signal exceeds 50% of background noise, resulting in a comprehensive list of 15,633 genes. We did not apply the 
abagen.keep_stable_genes function; therefore, our gene list was not refined using differential stability criteria. 
Abagen allows us the generation of brain transcriptome module-level values for a specific parcellation, that in our 
case, we chose the optimal brain partition. Moreover, we examined the transcriptomic expression at module-level 
in relation to genes associated with 40 brain disorders introduced in65. To do this, we calculated the mean tran-
scriptomic expression of all genes related to each disorder within each module. Subsequently, we performed a 
z-score analysis for each disorder to identify modules with low transcriptomic expression (z < −2) and modules 
with high transcriptomic expression (z > 2). The average expression of the different genes was also grouped into 
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7 different disease cateogories: Psychiatric disorders, Substance abuse, Movement disorders, Neurodegenerative 
diseases, Tumor conditions, or Developmental disorders.

Sex bias considerations.  Our selection of young individuals led to choosing 136 young participants from 
the LEMON database, with an unexpected male predominance (72%). The manuscript’s repository (https://
github.com/compneurobilbao/bha2) includes instructions for accessing the sex data of participants (https://
zenodo.org/record/8158914/files/participants.tsv), so if a new researcher creates a partition using a sex-balanced 
cohort, this limitation could be effectively addressed.

Data availability
This work involves data from different sources. First, the raw MRI images can be downloaded from the 
LEMON database webpage https://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html62. Second, 
the transcriptomic AHBA expression data can be downloaded from https://human.brain-map.org/. All post-
processed data obtained in this manuscript, including the time-series fMRI signals corresponding to regions in 
the different iPAs, the SC and FC matrices, the optimal brain partition, and the γ-modulated trees are available in 
(https://zenodo.org/record/8158914)66.

Code availability
We have used open tools available on GitHub, and we have also uploaded our own tools and code used in this 
manuscript. In particular,

•     For defining the iPAs, we have used the open tool “pyClusterROI” (https://ccraddock.github.io/cluster_roi/).
•     �For obtaining the transcriptomic expression matrices, we have used abagen (https://abagen.readthedocs.io/

en/stable/).
•     �All the analyses and code involved in the methods and results of this manuscript have been uploaded to 

https://github.com/compneurobilbao/bha2.
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