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Functional networks provide a topological description of activity patterns in the brain, as they stem from
the propagation of neural activity on the underlying anatomical or structural network of synaptic connec-
tions. This latter is well known to be organized in hierarchical and modular way. While it is assumed that
structural networks shape their functional counterparts, it is also hypothesized that alterations of brain
dynamics come with transformations of functional connectivity. In this computational study, we intro-
duce a novel methodology to monitor the persistence and breakdown of hierarchical order in functional
networks, generated from computational models of activity spreading on both synthetic and real struc-
tural connectomes. We show that hierarchical connectivity appears in functional networks in a persistent
way if the dynamics is set to be in the quasi-critical regime associated with optimal processing capabil-
ities and normal brain function, while it breaks down in other (supercritical) dynamical regimes, often
associated with pathological conditions. Our results offer important clues for the study of optimal neu-
rocomputing architectures and processes, which are capable of controlling patterns of activity and infor-
mation flow. We conclude that functional connectivity patterns achieve optimal balance between local
specialized processing (i.e. segregation) and global integration by inheriting the hierarchical organization
of the underlying structural architecture.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The recent convergence of neuroscience and network science
opens up new opportunities to approach the study of brain func-
tion [1–3]. A fundamental issue in this context is how structure
and function are related [4–8]. In the context of network neuro-
science, structure refers to the network mappings of the brain, also
known as connectomes, as derived from the actual anatomical con-
nections between brain regions, also called ‘‘connectomes” [9,10].
Structural connectivity (SC) is thus encoded in networks where
nodes are coarse-grained representations of specific brain regions,
and the links express the presence of white-matter based connec-
tions between pairs of nodes, while weights associated with links
conventionally measure the number of such connections.
Structural networks are then represented by weighted, non-
negative and sparse adjacency matrices, effectively containing
the anatomical routing information of a brain. The direction of each
connection can currently be recorded only for certain types of con-
nectomes (e.g. mice or primates); in most cases, including that of
the human connectome, adjacency matrices are symmetric as
directions of connections are still not detected.

Functional connectivity (FC), instead, is oftenmeasured fromneu-
ral activity correlations rather than actual anatomical pathways. As
activity correlations can be measured between any pair of nodes,
the matrix representations for functional networks differ substan-
tially fromthose for structuralnetworks in that they lose theproperty
of being sparse. FC matrices are dense and corresponding sparse-
network representations can only be obtained by applying arbitrary
thresholding procedures. As a further source of complication, FC
matrices lose the non-negativity of SCmatrices too, as activity corre-
lations are signed, revealing the existence of both correlations and
f func-
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anti-correlations [11]. This aspect makes the application of thresh-
olds an even more delicate issue, subject to a large deal of arbitrari-
ness, as in choosing for instance to exclude anti-correlations, or to
study correlations and anti-correlations separately.

We note that in spite of this complexity, FC data have been
recorded for years now and have led to ground-breaking advances
in the understanding of brain function. At the clinical level, FC data
have been successfully related to the occurrence of brain patholo-
gies [12–15]. At the graph theoretical level, FC networks have facil-
itated the introduction of statistical physics concepts such as scale
invariance, avalanches, criticality and localization in the brain [16–
21]. Advances in acquisition and analysis of FC data have allowed
the introduction of novel and challenging concepts, such as that
of dynamical FC, i.e., the more ambitious study of the time depen-
dence and dynamics of functional networks, obtained through the
recording of multiple functional networks, each one over a short
time window [22–24]. In all these approaches, the question of
what relevant topological information is lost when thresholds are
applied remains open.

Structural brain networks [25,26] are well known examples of
biological systems, which exhibit a hierarchical modular structure.
Hierarchical modular organization is often described by simple
mathematical models of synthetic hierarchical modular networks
(HMNs). Is it possible to say the same about functional networks?
In principle, the answer to this question is affirmative as also FC
networks are known to exhibit modular and hierarchical patterns
[27,10,23]. But, how general can the answer to the previous ques-
tion be if functional network topology can vary so wildly because
of arbitrary threshold choices? How persistent is the hierarchical
organization of FC data, upon applying different threshold and,
more importantly, in different states of neural activity? Are struc-
tural differences between SC and their corresponding FC networks
representative of pathological states? Answering these questions is
a necessary step towards the understanding of the relationship
between structural and functional connectivity in the brain. In par-
ticular, the study of this relationship often relies on assessing the
similarity between structural and functional connectivity. Similar-
ity measures were proposed in the past (see for instance [8]), high-
lighting how ‘‘similarity” itself may be non-trivially dependent on
the choice of thresholds used to extract functional networks. In this
work, we follow a more fundamental approach, in the attempt to
formulate a criterion to decide if a functional network is hierarchi-
cal and to do so irrespective of threshold choices.

The interest in the hierarchical organization of brain activity
patterns is rooted in the observation that hierarchical (and
hierarchical-modular) networks exhibit desirable properties of
robustness. Remarkably, hierarchical networks do not exhibit a
single percolation threshold, where a giant component emerges
together with a scale-free distribution of cluster sizes [28]. Instead,
in hierarchical modular networks, upon varying the control param-
eter p (i.e. upon removing a fraction 1� p of links or nodes) power-
law distributions of connected component sizes are encountered
for a broad interval of values of p [29,17]. The functional counter-
parts to this simple structural property are striking:

� activity in hierarchical models of the brain is sustained even
without any fine-tuning of regulatory mechanisms [30];

� avalanches of neural activity are power-law distributed in size
without the need to fine tune spreading control parameters
[17,18], rationalizing the experimental observation of scale
invariant activity patterns [31];

� simple dynamical models, normally displaying clear-cut tipping
points (phase transitions), exhibit instead extended quasi-critical
phase (e.g. Griffiths phases [32–34,18,35,19,20]), where activity
propagates by rare region effects and states of local coherence
emerge as chimera-like states [36–38].
2

These observations corroborate the view that the hierarchical
organization of the structural network of anatomical connections
is responsible for the brain ability to localize activity, avoiding
the opposing tendencies where active states die out (as encoun-
tered in advanced stages of some neurodegenerative diseases) or
invade the system (as typically occurs during pathological epileptic
seizures). From the perspective of neurocomputing and informa-
tion processing, HMNs thus provide an optimal architecture, which
ensures the balance of activity segregation and integration [39],
and results in enhanced computational capabilities, large network
stability, maximal variety of memory repertoires and maximal
dynamic range [18].

In order to analyze the topology of the resulting FC networks, we
exploit their associated spectral properties, allowing us to properly
identify hierarchical functional networks. In particular, we focus on
thewell-knownproperty of vanishing spectral gaps—which, follow-
ing the ideas in [18]— we use as a measure of the hierarchical orga-
nization. Networks characterized by dense connectivity and high
synchronizability exhibit a large separation between the two largest
eigenvalues of the adjacency matrix [40], or the two lowest distinct
eigenvalues of the Laplacian matrix, a property that we refer to as
large spectral gaps. Hierarchical networks of interest in brain mod-
eling, instead, display localized patterns of activity and, as a spectral
counterpart, vanishing (although non-zero) spectral gaps [18,36].
While the spectral characterization of HMNs includes many com-
plex aspects, the single fact that they exhibit vanishing spectral gaps
is quite remarkable and has been directly related with some impor-
tant dynamical features such as self-sustained activity and local
coherence [18,36]. These aspects make hierarchical networks
unique and, more importantly, constitute the reasonwhy hierarchi-
cal organization is essential in brain networks.

In what follows, we generate FC data from Monte Carlo simula-
tions of simple models of activity spreading in synthetic HMN
models for structural networks and on real SC data. We show that,
independently of the choice of thresholds, functional networks
generated in the quasi-critical regime always display hierarchical
organization (as quantified through spectral gaps). This feature is
lost as soon as FC data is produced in the super-critical regime –
i.e. above quasi-critical regime. Our results offer important insights
regarding the topological changes that FC data undergoes in patho-
logical states (the super-critical regime), providing clues for FC
analysis as a diagnostic tool. At the same time, our methodology
provides a new tool for the analysis of persistent features in func-
tional data, whose appearance is not an artifact of an arbitrary
threshold choice.

2. Materials and methods

Structural networks. We use computer generated models of
HMNs, in order to mimic realistic structural networks. As different
types of algorithms are used in the literature to generate HMNs
[30,41,18,20,21], in the following we refer the model proposed in
[21] without loss of generality. We call a the connectivity strength
of a HMN, as it is the main parameter controlling the emerging
topology. The network is organized in densely connected modules
of size M0, which represent the level 0 of a hierarchy of links. At

each hierarchical level i > 0, super-modules of size Mi ¼ 2iM0 are
formed, each one joining two sub-modules of size Mi�1 by wiring

their respective nodes with probability pi ¼ a=4i: the average
number of links between two modules at level i is

ni ¼ piM
2
i�1 ¼ aðM0=2Þ2, i.e. proportional to a, regardless of the

value of i. For a generic dynamic process running on a HMN in
the N ! 1 limit, the effect of lowest-level modules becomes neg-
ligible (relegated to transient time scales) and the time
asymptotics are dominated by the hierarchical organization: in this
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regime a becomes the only relevant construction parameter. We
remark that, being ni the number of links between any two mod-
ules of size Mi�1, the highest possible ni is given by M2

0, so that a
can take values in the interval 4=M2

0 6 a 6 4.
Graph spectra. We identify an unweighted graph through its

adjacency matrix Aij, whose generic element ij is 1 if nodes i and
j are connected, and 0 otherwise. This choice represents a simplifi-
cation of the more complex case of a weighted graph, where each
link between i and j comes with a weightWij. The spectrum of such
an unweighted graph is given by the eigenvalues of Aij. Since we
deal with graphs that come in a unique connected component,
the Perron-Frobenius theorem ensures that the eigenvalue of lar-
gest modulus k1 is unique, real and positive. The spectral gap g is
then defined as the difference in modulus between k1 and the sec-
ond eigenvalue k2. Here we deal with undirected HMNs, so that Aij

is symmetric, and g ¼ k1 � k2. We can also compute the Laplacian
spectrum of a graph, which consists of the eigenvalues of the graph
Laplacian Lij ¼ dijkj � Aij —where ki ¼

P
jAij is the degree of node i—

which provides a discretization of the Laplace–Beltrami operator
[42]. If Aij is symmetric, Lij is symmetric and positive semi-
definite, and the spectral gap gL is defined as the modulus of its
smallest nonzero eigenvalue. An alternative discretization of the
Laplace–Beltrami operator is provided by the normalized Laplacian
matrix Lij ¼ dij � Aij=

ffiffiffiffiffiffiffiffi
kikj

p
, for which the spectral gap gL can be

computed as above. Finally, for completeness, let us also mention
that the results for L also extend to the random walk Laplacian,
which enters the master equation of random walks, and has the
same spectrum of eigenvalues as L [42].

Dynamical model. We simulate dynamics in HMN models of
the brain using a null model of activity propagation in network
—whose use has proven effective as a probing tool to understand
paramount features of brain activity [30,18];— in particular, we
consider the so-called susceptible-infected-susceptible (SIS)
dynamics. In this well-known model, nodes can be either active
(infected I) or inactive (susceptible S); in terms of neural dynamics
an active node corresponds to an active region in the brain, which
can activate an inactive neighboring region with a given probabil-
ity j, and which can be deactivated at rate l (which we set to 1
without loss of generality) due to e.g., exhaustion of synaptic
resources.

In particular, within the so-called quenched mean-field approx-
imation, the equations for our model read [43]

d
dt
qiðtÞ ¼ �lqiðtÞ þ j½1� qiðtÞ�

XN

j¼1

AijqjðtÞ; ð1Þ

where qiðtÞ is the probability that node i is in the active state at time
t. We call qðtÞ ¼ hqiðtÞi the average activity at time t. In the general
case, SIS dynamics results in a critical value j ¼ jc , above which
activity invades the system indefinitely reaching a non-zero steady
state qðt ! 1Þ > 0 (super-critical regime, in the following). In the
case of HMNs, values j/jc (quasi-critical regime) constitute a Grif-
fiths phase and are associated with rare-region effects and e.g. slow
activity relaxation, pointing to an effective model for normal brain
function. We consider initial states where all nodes are active and
simulate time evolution for different values of j. Following this pro-
tocol in HMNs, simulations are characterized by an initial transient
regime, after which, the asymptotic behavior takes over, namely a
steady state for j > jc and a power-law time-decay within a finite
range of j below jc (a Griffiths phase; see [33,34,18]).

Generation of functional data. As a proxy for empirically mea-
sured FC networks, in our computational study we determine co-
activation matrices [44,45]. In particular, we acquired activity data
from a time interval I in our simulation time series qiðtÞ. We choose
I to occur after the initial transient regime described above (which
3

can be simply determined by visual inspection). If j > jc; I is an
interval of the steady state. If j < jc; I covers a part of the
power-law-decay regime instead. From the data in I, we generated
a matrix Cij with generic ij element equal to the probability that
nodes i and j are simultaneously active in a given time bin Dt. Using
these data, we averaged Cij across multiple realizations of the

dynamics (at least 105 in all cases), and considered a threshold h,
thus generating an adjacency matrix of the functional network
for each h by imposing AijðhÞ ¼ Hðh� CijÞ, where Hð Þ denotes the
Heaviside step function. Let us remark that, when recording these
synthetic functional data, we focused on a single realization of the
structural network hosting the dynamics, mimicking a real-life sce-
nario in which diagnostics are conducted on a single subject.

We emphasize that the use of co-activation matrices as a proxy
for FC is motivated by the fact that in the simplified dynamic
model time series are sequences of binary states (1 and 0), which
makes it natural to define simultaneous activity. Experimental
time series, instead, are not constituted by binary states and
require functional data to be computed as Pearson correlation coef-
ficients. As both methods consist in computing activity correla-
tions, we believe that our forthcoming conclusions for the
synthetic case and its co-activation matrices carry over to real sys-
tems and correlation matrices. Furthermore, since the method pro-
posed here requires only a finite time interval I, it finds a natural
application to the study of dynamical FC, where functional net-
works are generated from short time intervals.

Mapping to percolation problem. For every functional network
characterized by an adjacency matrix AijðhÞ, we varied h continu-
ously and we monitored how the network structure evolves as
measured by two indicators:

� the size of the largest connected component s1;
� the spectral gap g (as well as its Laplacian counterparts for
completeness).

For h � 0 the networks is fully connected, i.e. s1 ¼ N and g ¼ N
(gL ¼ N; gL ¼ 1), while for h � 1 the network is completely frag-
mented, i.e., s1 ¼ 1 and g � 0 (gL ¼ gL ¼ 0). Thus, for intermediate
h the network necessarily undergoes a percolation-like phase tran-
sition, signalled by a decrease in s1. If the functional network is
non–hierarchical, at the same transition point, g becomes small.
In other words, both s1 and g act as order parameters of the same
percolation-like transition and share the same critical value of h.
However, this scenario changes for hierarchical networks. Since a
hierarchical network must possess a small spectral gap without
being fragmented, the two transitions must be well separated
instead. In particular, we expect a threshold interval in which the
spectral gap g decreases by orders of magnitude (the order of N),
while s1 remains close to its maximum. Let us remark that the idea
of analyzing the dependence of s1 on h in functional networks is
not new, as it was developed by Gallos and collaborators [39]. Here
the focus instead on both g and s1 .

Experimental data. Even if the present work relies on the gen-
eration of functional networks by simulating activity on synthetic
structural networks, in order to achieve more general conclusions,
we also extended the analysis to the case in which the underlying
structural networks are actual connectomes as derived from neu-
roimaging studies. In particular, we use the connectomes of two
healthy subjects, taken from the results of a broader experimental
study, which is described in the Appendix.
3. Results

Our main goal is to find an effective way to assess if a functional
network is hierarchical, thus mimicking the topology of the under-
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lying structural network, or if activity correlations result in a differ-
ent, emergent topology. To this end, we define the concept of hier-
archical functional network as follows. Since many of the desirable
dynamic properties of hierarchical modular networks (rare region
effects, generic criticality, localization [17,18,36,20]) can be traced
back to their small spectral gaps g (as well as gL and gL), we define
a hierarchical functional network as a network that

� i) is generated by activity patterns on a structural HMN;
� ii) possesses vanishing spectral gaps for a finite range of h val-
ues, while still being connected (i.e. not fragmented).

Note that the second requirement ensures that the vanishing
spectral gap property is not a trivial consequence of a network
breaking into many connected components [42].

To produce the functional networks we consider structural
HMNs of size 210, which already result on dense co-activation
matrices of order 220 thus making the rest of the study computa-
tionally intensive. We note that most experimentally acquired con-
nectomes belong in the same size range, allowing for a direct
comparison as we will show later on. By running simulations on
these synthetic HMNs and acquiring functional data as described
in Section 2, we observed (see Fig. 1a) that this definition of hier-
archical functional networks describes exactly what happens in
the quasi-critical regime. Indeed, simulation data for the quasi-
critical case show that, upon increasing the threshold h, the net-
work undergoes a percolation-like transition (red dotted line), as
the largest connected component size s1 (red circles) diminishes
from N (fully-connected network) to 1 (fully-fragmented network).
As we mentioned in Section 2, our main focus is on the spectral gap
g and on the way its dependence on h differs from that of s1. We
find that the spectral gap g (blue squares) too exhibits a transition
(blue dashed line), from N (when the functional network is dense
and fully connected) to vanishing values. The two transitions how-
ever do not coincide and a range of control parameter values h
emerges, where the network is connected (s1 ¼ N), but spectral
gaps vanish (g ! 0), decreasing by up to three orders of magni-
tude. As a guide to the eye, we highlight the h interval as the one
that begins when g starts decreasing significantly and ends when
s1 starts decreasing by a comparable amount. Thus, within this
range, the functional network exhibits a small spectral gap while
still preserving its non-fragmented state; i.e. the network is hierar-
chical, accordingly to the criterion we proposed.

The strength of this result resides in its dependence on the
dynamical regime that we simulate. We just showed that the func-
tional network is hierarchical in the quasi-critical regime,more pre-
cisely in the Griffiths phase. But, what happens in the super-critical
regime, obtained for activation ratesj > jc , which is normally asso-
ciatedwith abnormal (excessive) neural activity? Fig. 1b shows that
in this regime the two phase transitions almost coincide and, more
importantly, there is no range of h values, where the functional net-
work is connected and the spectral gaps vanish. The functional net-
work is not hierarchical, since whenever it is connected it has large
spectral gaps (which only decrease slightly, still maintaining huge
values, and not dropping by an amount comparable to N).

The picture of hierarchical functional networks that develop an
emergent, non-hierarchical topology in the super-critical regime is
further corroborated by the study of the degree distributions of such
networks, as showninFig. 2. In thequasi-criticalphase, and forvalues
of hwithin the range highlighted in Fig. 1a, degree distributions have
power-law tails with continuously varying exponents [46,18]. In the
super-critical regime instead, degree distributions display heavier
power-law tails with an emergent, limiting exponent close to 3=2.

In order to verify the robustness of our results, we extended the
analysis to deal with other forms of connectivity matrices. In
4

particular, our main results so far have been obtained using the
definition of spectral gap g applied to the adjacency matrix AijðhÞ.
This choice is motivated by the fact that the functional network
of adjacency matrix AijðhÞ is produced by an SIS process, which is
linearized by the adjacency matrix Aij of the underlying structural
network. Nevertheless, one may wonder if the result above extends
to Laplacian matrices [42], which are of interest in problems of
transmission, diffusion and, more importantly in the case of brain
dynamics, synchronization [36,47,48]. Fig. 3 shows that our main
result carries over to the case of Laplacian matrices, both in the
non-normalized variant L (historically, the Kirchhoff Laplacian)
and in the normalized one L (sharing the same spectrum of eigen-
values as the random walk Laplacian).

Last but not least, given the relevance of the above results in the
field of computational neuroscience, and in order to prove that
they are not artifacts of our specific choice of synthetic HMN net-
works, we performed the same type of analysis on real human SC
connectomes of sizes comparable to the ones considered above
(N ¼ 2514). The hierarchical modular structure of human connec-
tomes is shown in Fig. 4, were we show the SC adjacency matrix,
averaged over 12 healthy patients. We ran our simulations on SC
adjacency matrices of individual subjects and performed our spec-
tral analysis of the resulting FC data. Our findings, shown in Fig. 5
are striking as they show how the same fingerprints of hierarchical
functional organization in the quasi-critical case emerge by simu-
lating activity propagation simulations on actual connectomes.
Data shown here is produced from the structural network of two
healthy subjects (top and bottom row respectively).

As real connectomes encode much greater complexity than the
HMNmodels used above,wenotice significant changes in the shapes
of the s1ðhÞ functions,where an initial slowdecrease in s1 anticipates
the much faster drop, which we identify with the onset of the net-
work fragmentation. We also notice significant quantitative differ-
ences introduced by subject variability. Notwithstanding these
differences, the conclusions of our analysis are the same as for the
syntheticHMNcase: for simulations run in the quasi-critical regime,
one can highlight a range of h in which s1 is still in its regime of slow
decrease, while spectral gaps have dropped by up to two orders of
magnitude. A systematic study of a much larger number of subjects
is beyond the scope of this paper and is left for future work.
4. Conclusion and discussion

The relationship between structure and function in brain net-
works remains to this day a field of enormous interest. The ulti-
mate goal of devising diagnostic tools that leverage concepts of
network theory applied to SC connectivity data begs for a deeper
understanding of how dynamic patterns originate from structural
motifs, or to which extent they self-organize irrespective of those
motifs. What we introduced here is a minimal-model analysis,
which however captures some essential aspects of the structure–
function relationship. In the quasi-critical regime, activity patterns
are strongly localized and result in a FC network which closely
mimics the SC hierarchical patterns. Our criterion to establish the
similarity of SC and FC consists in highlighting the existence of a
non-trivial threshold interval, in which FC networks exhibit the
small-spectral gap property, known to characterize FC networks.
Similarity thus consists in the inheritance of a basic spectral prop-
erty. This is not to say that activity correlations do not play a role in
shaping FC patterns: the FC degree distributions do not replicate
those of SC, they in fact are power laws with continuously varying
exponents. This form of generic scale invariance has the same
structural origin as the one observed in avalanche size measure-
ments in this same regime [18,49]: the hierarchical organization



Fig. 1. Persistence and breakdown of hierarchical organization. a) Largest connected component size s1 and spectral gap g in the quasi-critical regime (j/jc), or Griffiths
phase, for co-activation matrices AijðhÞ, generated by activity propagation dynamics on a single structural HMN. A range of threshold values h exists, where the resulting
functional network is connected (s1 ¼ N) and has vanishing spectral gaps (by up to three orders of magnitude, the upper limit given by the system size). More precisely, we
construct the range as the interval ½h1; h2�, such that, given a fixed f < 1; gðh1Þ=N ¼ s1ðh2Þ=N ¼ f . Here a we choose f ¼ 0:3 in order for h2 to signal the first significant drop in
largest component size: s1=N > f indicates a network which is still nearly intact; s1=N < f signals a significant reduction in giant component size, thus pointing to the onset of
fragmentation. Different structural networks may produce different s1ðhÞ, requiring different choices of f. b) Same as in a) but for simulations run in the super-critical regime
(j > jc). No significant drop in the spectral gap is recorded while the network is intact, pointing to the loss of hierarchical order. For as long as the network is connected
(s1 ¼ N), g drops by negligible amounts, and remains of the order of N.

Fig. 2. Degree distributions of functional networks. a) Quasi-critical regime. Red curves are obtained for values of h producing networks with maximum separation between
s1 and g. Larger values of h (black curves) occur when the network is close to failure (s1 ! 0). In order to improve the statistical sampling, multiple functional networks (60)
are generated from the same HMN and their degree distributions averaged. The limiting distribution is characterized by an estimated exponent �3:1 b) Super-critical regime.
The degree distributions change dramatically, displaying much heavier tails and pointing to a significant rearrangement of the topology with respect to the quasi-critical case.
A limiting distribution PðkÞ � k�1:6 is encountered for higher values of h.

Fig. 3. Persistence of hierarchical organization, as from the study of Laplacian
matrices. Data is obtained as in Fig. 1a, employing spectral gaps from the graph
Laplacian L and the normalized LaplacianL. Data for s1 is the same as in Fig. 1a and
is reported here for comparison. We choose f ¼ 0:3 as in Fig. 1.
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induces rare region effects, which are reflected both in avalanches
and in the topology of the functional network.

In the super-critical regime, which represents a pathological
state akin to epilepsy, the spectral fingerprint of hierarchical net-
5

works is lost and functional connectivity earns a global and much
denser network topology. While it was shown in the past that net-
works with localized structures host localized activity patterns also
in the super-critical phase [50] —something we were able to con-
firm in HMN models of brain activity [21]— the change in spectral
properties and degree distributions reported here points to a sig-
nificant reorganization of dynamics and correlations, in which
modules mutually reactivate.

Our methodology addresses the analysis of activity correlation
data without fixing an arbitrary threshold. Thresholds are treated
as a control parameter in a phase diagram, which is analyzed as a
whole, to show how, in the quasi-critical regime, threshold values
which correspond to non-trivial functional network topologies
(fully connected, fragmented) also lead to the non trivial property
of small spectral gaps, which allows us to conclude that the func-
tional networks effectively inherit the hierarchical organization of
the structural ones.

We believe that our work serves as a proof-of-concept study, for
more complex applications in which multiple spectral indicators
are considered, and in which FC is inferred from real time series,
rather than from numerical simulations. For instance, by altering
the natural dynamics with drugs able to block excitation and/or
inhibition, one could analyze how and when those alterations are



Fig. 4. SC adjacency matrix of the human connectome. SC matrices of size N ¼ 2514
are averaged over 12 healthy patients. The hierarchical modular organization is
highlighted by choosing a node labeling scheme based on agglomerative clustering
methods [8]. While in our study we employ individual SC matrices, here we show a
network average for ease of visualization.
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reflected in the hierarchical structure of FC networks and in its pos-
sible breakdown.

The simplemethodologywe adopt here, based on co-activations,
has clear advantages while generating functional networks under
Fig. 5. Persistence and breakdown of hierarchical organization of functional networks g
critical regime for the first subject. (c) and (d): quasi-critical regime and super-critical reg
Subject variability introduces changes in the functional form of the curves for s1 and g. In
subject (top) and f ¼ 0:1 for the second subject, since those are the approximate values o
as in Fig. 1. In the quasi-critical regime a range of h emerges, where g decreases by over,
numerical model, this behavior breaks down in the super-critical case, signaling a patho
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minimal assumptions, and is motivated by the simplified nature of
the dynamicmodel thatweuse. At the same time, our study can also
be conducted on FC data extracted as Pearson correlation, allowing
for instance the separation of correlation and anti-correlation
effects. Given the fact that both structural and functional data is
available to us for a large numberof subjects, as detailed in Section2,
a large-scale application of our methodology is planned an the next
step of our investigation. In passing, we note that since the present
results can be obtained with data acquired in a short time window,
our approach also lends itself naturally to the study of experimental
data sets obtained in the form of dynamical FC.

Our work of course relies on essential simplifications of the
original neuroscience problem. Namely our simulated dynamics
is a simplification of neural activation processes. Nevertheless,
we believe that the results reported here provide useful insights
regarding the extent to which structure and function are connected
in brain networks, and how pathological states can be accompa-
nied by radical shifts in functional connectivity. Finally, we believe
that the spectral analysis presented here to study persistent and
emergent topologies in FC data sheds light also on the relationship
between optimal architectures and tuneable performance in the
broader context of neurocomputing.
Abbreviations

FC: functional connectivity; HMN: hierarchical modular net-
work; MRI: magnetic resonance imaging; SC: structural connectiv-
ity; SIS: susceptible-infected-susceptible.
enerated from two real connectomes. (a) and (b): quasi-critical regime and super-
ime for the second subject. Results are as for the synthetic HMN case shown in Fig. 1.
particular, in order to highlight the different intervals of h, we fix f ¼ 0:5 for the first
f s1=N for which the networks start fragmenting. Our main conclusions are the same
at least, an order of magnitude while the network is still not fragmented. As for our
logical state.



1 Here, we only report the parameters which are needed for image preprocessing,
but a complete information about data acquisition can be found athttp://protocols.
humanconnectome.org/HCP/3T/imaging-protocols.html
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Appendix A

Data available to us are from 30 healthy subjects (14 males, 16
females) with age between 22 and 35. Data were provided through
the Human Connectome Project, WU-Minn Consortium (Principal
Investigators: David Van Essen and Kamil Ugurbil;
1U54MH091657) funded by the 16 NIH Institutes and Centers that
support the NIH Blueprint for Neuroscience Research; and by the
McDonnell Center for Systems Neuroscience at Washington
University. To build the connectivity matrices (for further details
see [51]), we processed the same-subject structure–function triple
acquisitions of magnetic resonance imaging (MRI) – see Appendix
for details on acquisition parameters – consisting of: 1. High-
resolution anatomical MRI (used for the mask segmentation of gray
matter, white matter and cerebrospinal fluid, and for the transfor-
mation to common-space of the functional and the diffusion data),
2. Functional MRI at rest (used for extracting region time series of
the blood-oxygen-dependent signal, after removal of movement
artifacts and physiological noise, but not the global signal regres-
sion), and 3. Diffusion MRI (used for building SC matrices after fit-
ting a diffusion tensor to each voxel, running a deterministic
7

tractography algorithm using the UCL Camino Diffusion MRI
Toolkit [52], and counting the number of streamlines connecting
all pairs within the N ¼ 2514 regions, each one containing on aver-
age 66 voxels.
A.1. Imaging acquisition parameters

Same subject structure–function triple acquisitions were per-
formed using a 3T Siemens Connectome Skyra with a 100 mT/m
and 32-channel receive coils. The acquisition consisted of1:

High-resolution anatomicalMRIwasacquiredusinga T1-weighted
3DMPRAGE sequencewith the following parameters: TR = 2400ms;
TE = 2.14 ms; Flip angle = 8 deg; FOV = 224�224mm2; Voxel
size = 0.7 mm isotropic; Acquisition time = 7 min and 40 s.

Functional data at restwere acquired to obtain the blood-oxygena
tion-level-dependent (BOLD) signals with a gradient-echo EPI
sequence with the following parameters: TR = 720 ms,
TE = 33.1 ms; Flip angle = 52 deg; FOV = 208� 180 mm2;
Matrix = 104� 90; 72 slices per volume, a total number of 1200 vol-
umes;Voxel size=2mmisotropic;Acquisition time=14minand33s.

Diffusion data were acquired with a Spin-echo EPI sequence
with the following parameters: TR = 5520 ms; TE = 89.5 ms; Flip
angle = 78 deg; FOV = 210 � 180 mm2; Matrix = 168 � 144; 111
slices per volume; Voxel size = 1.25 mm isotropic; 90 diffusion
weighting directions plus 6 b = 0 acquisitions; Three shells of
b = 1000, 2000, and 3000 s/mm2; Acquisition time: 9 min 50 s.
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