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Abstract

Neural adaptation leads to changes in the responses of single neurons and neural
populations during continued exposure to a stimulus. At the single neuron level,
adaptation reduces responses to a constant stimulus. At the perceptual level, adap-
tation can manifest itself as aftereffects. For instance, prolonged adaptation to a
grating briefly shifts the perceived orientation of a test grating, which is called
the tilt aftereffect (TAE). Although phenomenological models of the perceptual
effects of adaptation are common, models at the single neuron level based on
physiological mechanisms resulting in TAEs at population level are rare. Here
we examined a model of adaptation in populations of cortical neurons based on
short-term synaptic plasticity (STP). Neurons organized in a ring model were con-
nected by center-surround interactions. Synaptic depression, affecting both exci-
tatory and inhibitory synapses, produced reduction in neural responses, while in-
hibitory facilitation increased inhibitory efficacy. For strongly facilitory synaptic
inhibition the peaks of the tuning curves shifted away from the adapting stimulus
(repulsive shift), but for weak inhibitory facilitation, the tuning curves shifted to-
wards the adapting stimulus (attractive shift). Using both population vector and
winner-take-all decoders, the TAE reflected in the population was attractive for
high values of inhibitory facilitation and repulsive for low values. Psychophysical
experiments report repulsion close to the adapting stimulus and attraction farther
away, consistent with the predictions of facilitory inhibition.
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1 Introduction

Adaptation is a reduction in the firing activity of neurons to prolonged stimulation that has been
observed in many cortical regions of several species [1, 2, 3]. Adaptation enhances the impact of
changes in sensory inputs, but in addition to reducing the responses of neurons, adaptation can also
shift the tuning curves, which is thought to lead to perceptual aftereffects. Examples are the tilt
aftereffect and motion aftereffects, which have been interpreted as the bias in a population decoder
resulting from adaptation [4, 5, 6, 7, 8].

There are several models of adaptation that link the TAE to adaptation of the responses of single
neurons and neural populations [4, 9, 8]. Here, we explore a mechanism based on short-term synap-
tic plasticity (STP) occurring at the same time-scale as stimulus presentation [10]. Synaptic efficacy
can either increase (facilitation) or decrease (depression) in an activity-dependent manner depending
on the presynaptic activity. Although the effect of synaptic depression has been studied before in
the context of adaptation [11], the effect of synaptic facilitation has not been addressed before.

We study adaptation in the cortical ring model [12], in which neurons that encode different stimu-
lus orientations are connected by lateral connections with an excitatory center-inhibitory surround
profile. In presence of STP, the ring model exhibits a range of behaviors depending on the synaptic
strengths. Reduction in neural responses was achieved by synaptic depression, affecting both ex-
citatory and inhibitory connections. Synaptic facilitation affected only the inhibitory connections.
Depending on the amount of facilitory inhibition, the tilt aftereffects could be either attractive or
repulsive. Thus, a single parameter can change the perceptual adaptation tilts of the cortical network
in either direction.

2 Modeling

2.1 Physiological data of adaptation

The adaptation parameters of the model were fitted to neural responses obtained from extracellular
single unit recordings in the primary visual cortex V1 of macaque monkeys before and after adap-
tation to a stimulus presented for 300 ms [13]. For n = 19 different cells, 8 different orientations
were tested with gratings, with both bars lighter than background and bars darker than background.
The spike rate was counted in 50 ms bins. The firing rate for each orientation was calculated as the
arithmetic mean across the different stimulus types. In addition, symmetric orientations (e.g. peak
at +22.5 degrees and peak at -22.5 degrees) were collapsed, yielding 60 trials for the peak and the
orthogonal orientation and 20 trials for all other orientations. The variability was expressed in terms
of the Fano Factor (FF), which is the spike count variance across trials divided by the mean spike
count. The FF did not vary with time, was independent of stimulus orientation, and did not depend
on the firing rate, implying that the noise was multiplicative (see 2.2). From the data we fitted FF =
1.50 for all neurons.

2.2 Network setup and neural response

The network consisted of N = 128 rate-coded model neurons in a ring [12]; each neuron was
labeled by its preferred orientation θ, which ranged between−90 and 90 degrees. The instantaneous
firing rate R̄θ (spikes per second) was proportional to the rectified synaptic current, thus

R̄θ = κ[I]+ + b, (1)

where [x]+ = max(x, 0). The constant b is the background firing rate and κ is the gain needed
to produce the firing rate R̄θ for a given input I . Parameter values can be found in Table 1. The
variability observed in [13] was included via multiplicative noise to each neuron’s activity. This
noise reflected the stochastic nature of spikes generation and was added after the input current was
converted to the firing rate Eq. (1). We set

Rθ = R̄θ + σ(R̄θ)η(t), (2)

where η is Gaussian white noise, (〈η(t)〉 = 0, and 〈η(t)η(t′)〉 = δt,t′ ), and R̄θ denotes the average
over all trials. In agreement with [13], we fixed FF = 1.50 for all simulations presented here by
setting the required amplitude according to σ(R̄θ) =

√
1.50

√
R̄θ.
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Table 1: Symbols and parameters in the model

Meaning Symbol Value
neuron’s preferred orientation θ (−90, 90) degrees
adapting stimulus orientation ψ 0 degrees
test orientation φ (−90, 90) degrees
time decay of synaptic current τ 10 ms
amplitude of thalamocortical input aff 4.0
Gaussian width of thalamocortical input σff 45.0
gain for excitatory intracortical input gexc 3.33
interaction power for excitatory connections Aexc 2.2
gain for inhibitory intracortical input ginh 125
interaction power for inhibitory connections Ainh 1.4
background firing rate b 4Hz
input current to firing rate gain κ 4.0 Hz
Fano Factor FF 1.5
probability of transmitter release, excitatory synapse Uexc 0.02
recovery time for synaptic depression τdep

exc 600 ms
probability of transmitter release, inhibitory synapse Uinh 0.06
recovery time for synaptic depression τdep

inh 100 ms
recovery time for synaptic facilitation τ fac

inh 1 ms, 30 ms

2.3 Adaptation protocol and dynamics

For each trial, the simulation was run until the network activity reached a stationary state (∼ 150ms),
after which an adapting stimulus with orientation ψ was presented for 300 ms during which the
network adapted, in agreement with [13], until reaching a new state in which no further adaptation
was observed. The response to a stimulus with orientation φ was then tested, which again required
the network to reach an equilibrium. The adaptation protocol is shown in Fig. 1. The activity at the
end of this period corresponded to a single trial response. Decoders were applied to estimate the
orientation from the population responses after 500 trials.

Thus, for each neuron the synaptic current had three angular dependencies and evolved in time
according to

τ
∂I(θ, φ, ψ, t)

∂t
= −I(θ, φ, ψ, t) + Iff(θ, φ) + Iexc(θ, φ, ψ, t)− Iinh(θ, φ, ψ, t)

(3)
whereψ is the adapting stimulus angle, φ is the test stimulus angle, θ the neuron preferred orientation
(the one before adaptation) and τ is the synaptic time constant [14]. The current consisted of a
feedforward excitatory input Iff (modeling thalamo-cortical connections) and excitatory Iexc and
inhibitory Iinh inputs mediated by lateral cortical connections with a center-surround (Mexican-hat)
profile subject to short-term synaptic depression and facilitation, details in 2.5.

2.4 Synaptic inputs

The input Iff represented feedforward excitatory input and was assumed not to be subject to adapta-
tion [15], and therefore to be independent on ψ. This input was modeled as a Gaussian with periodic
boundary conditions:

Iff(θ, φ) = aff

[
exp

(
− (θ − φ)2

2σ2
ff

)
+ exp

(
− (θ − φ+ 180)2

2σ2
ff

)
+ exp

(
− (θ − φ− 180)2

2σ2
ff

)]
(4)

where σff represents the Gaussian width and aff its amplitude (cf. Table 1). Lateral connections
mediated the excitatory (Iexc) and inhibitory (Iinh) inputs to neuron θ according to

Iexc(θ, φ, ψ, t) = gexc

∑
θ′

E(θ, θ′)uexc(θ′, φ, ψ, t)xexc(θ′, φ, ψ, t)Rθ′(φ, ψ, t)
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Iinh(θ, φ, ψ, t) = ginh

∑
θ′

I(θ, θ′)uinh(θ′, φ, ψ, t)xinh(θ′, φ, ψ, t)Rθ′(φ, ψ, t) (5)

where θ′ and θ represented respectively the pre- and postsynaptic neurons, the constants g were
recurrent gain factors, and Rθ was a noisy realization of the firing rate.

In Eq. (5) short-term synaptic plasticity is introduced trough the dynamical variables u (facilitation)
and x (depression) (see section 2.5).

.....

? 

300 ms

adapter test 

cortical network 

stimuli sequence 

exc
inh

population decoder
bias (TAE)

Figure 1: Scheme for adaptation protocol and population decoder. The network adapted to a
stimulus with orientation ψ = 0 for 300 ms, this was followed by a test stimulus with orientation
φ during which no further adaptation took place. The network architecture consisted of a recurrent
network in which neurons received feedforward input (Iff ) and lateral input with short range exci-
tation (exc, connection with circles) and long range inhibition (inh, diamonds). Periodic boundary
conditions (not shown) ensured a ring topology for the network. Reading out the population re-
sponse by a decoder, we computed the bias (a proxy for the TAE) for both nonfacilitory inhibition
and facilitory inhibition.

The functions E and I in Eq. (5) define the connection strength between cells θ and θ′. Similar
to [9], we use E(θ, θ′) = [CK(|θ − θ′|)]+ and I(θ, θ′) = [−CK(|θ − θ′|)]+ where K(θ) =
[cos (2θ) + 1]Aexc − [cos (2θ) + 1]Ainh . The functions E and I were normalized with the constant
C so that the sum of connections from any cell to the rest equals 1, that is 1/C =

∑
i |K(θi)|.

The exponents Aexc and Ainh control the range of interaction; the smaller they are, the flatter and
wider the connection profile. We used a center-surround or Mexican-hat profile for the connection,
satisfying Aexc > Ainh, as in previous studies [12, 9, 16].

2.5 Synaptic short-term plasticity as a potential mechanism for cortical adaptation

According to the phenomenological model in [10], synaptic efficacy is modulated by synaptic de-
pression (x) and synaptic facilitation (u). Physiologically, the dynamics of x accounts for neuro-
transmitters depletion and u for the calcium influx into the presynaptic terminal and its effects on
release probability (U ). The amount of available resources is given by x and the utilization parame-
ter by u. First-order differential equations for the depression dynamics gives

∂x(θ, φ, ψ, t)
∂t

=
1− x(θ, φ, ψ, t)

τdep
− u(θ, φ, ψ, t)x(θ, φ, ψ, t)Rθ(φ, ψ, t) (6)

According to Eq. (5), for a given neuron response Rθ, an amount ux of neurotransmitters is inte-
grated into the postsynaptic current, thus reducing x. At the same time, the response Rθ increases u
according to

∂u(θ, φ, ψ, t)
∂t

=
U − u(θ, φ, ψ, t)

τ fac
+ U (1− u(θ, φ, ψ, t))Rθ(φ, ψ, t). (7)
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Both parameters τ fac and τdep are recovery time constants, that is, the variables u and x recover
respectively to baselines given by u = U and x = 1. Thus, for each synapse the limits for x are 0
for maximum depression and 1 for zero-depression. The limits for u are U for zero-facilitation and
1 for maximum facilitation. Between those limits, both dynamical variables x and u evolves in time
in an activity-dependent manner according to Eqs. (6) and (7).

Although in principle both excitatory and inhibitory synapses may exhibit synaptic depression com-
bined with synaptic facilitation [17], we will consider assume that excitatory synapses are depress-
ing, while inhibitory synapses display both depression and facilitation. To tune the strength of
facilitation we set τ fac

inh = 30 ms to obtain strong facilitation. We used τ fac
inh = 1 ms for very weak

facilitation; the recovery is then so fast that facilitation is virtually absent.

3 Results
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Figure 2: Effect of adaptation on population response. A,B: Tuning curve properties at the non-
facilitory inhibition (A) and facilitory inhibition (B). Individual neuron tuning curves before and
after adaptation for neurons with a preferred orientation of 0 (green), 45 (red) and 90 (blue) degrees,
before (solid lines) and after adaptation (dashed lines). The adapting stimulus orientation ψ was
at zero degrees (marked with an arrow in panel A). C,D: Changes in tuning curve properties after
adaptation. C: Gain change for all neurons, defined as the difference between the maximal response
per neuron after adaptation and the response before adaptation. The model parameters in the two
conditions A and B were chosen in order to produce the same gain change for the neuron with θ = 0
(marked with a small arrow). D: Peak position shift for all the neurons, defined as the difference
between the location of the center of mass of each neuron’s tuning curve after and before adaptation.
For neurons with positive preferred orientations, positive values for the peak shift correspond to
repulsive shifts (away from the adapting stimulus) and negative values to attractive shifts (towards
the adapting stimulus). The two conditions A and B, only differing by the amount of short-term
synaptic inhibitory facilitation, yielded different shift directions after adaptation.

We first examined the effects of the STP on the tuning curves Fig.2. In both STP scenarios the peak
firing rates were reduced after adaptation. However, the feet of the tuning curves were differently
modified, Fig.2C. The peak shift of the tuning curves was also strongly dependent on the facilitation
strength, Fig.2D.
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Next, we analyzed how adaptation modified the output of the network. Fig. 3. We estimated the
decoding performance with two well-known population decoders, the Population Vector (PV) and
Winner-Take-All (WTA) [4]. Since these decoders do not have access to the state of adaptation,
their estimates will typically be biased [7]. For winner-take-all decoding the estimate was simply
the (non-adapted) preferred orientation of the neuron with highest firing rate. For the population
vector decoder the responses of all neurons were vectorially summed with an orientation equal to
the neuron’s preferred orientation before adaptation.

For each decoder, we computed both the bias and the variance. The bias is the difference between the
mean perceived orientation and the actual presented stimulus orientation. Similar to previous works
[4, 5, 8], the bias of the decoder can be interpreted as the tilt aftereffect (TAE). For estimations of
positive test orientations (φ > 0), positive values of the bias give a repulsive TAE and negative
values an attractive TAE. The decoder variance is a measure of its efficiency, the smaller it is the
more efficient is the decoder [7].

For the two decoders, the bias had a similar profile, Fig. 3A-B top row. The case of nonfacilitory
inhibition always gave a repulsive TAE from the adapting stimulus, independently on the orientation
of test stimuli. For the case of facilitory inhibition, however, both repulsive and attractive TAEs
occurred. Nearby to the adapting stimulus ψ, a small repulsive TAE coexisted with an attractive
TAE further from the adapting stimulus. As previously reported, the tuning of individual neurons
can behave differently from the population tuning [9]. The population bias can be opposite from
the individual tuning curve shift, cf. Fig. 3A-B to Fig. 2D. The reason is that the population vector
weights individual responses according to their firing rate. Therefore, although a neural tuning
curve could shift towards the adapting stimulus orientation, if the rate were sufficiently reduced, the
population vector can instead shift away from the orientation of the adapting stimulus.

The variance of the two decoders as a measure of their efficiency is plotted in Fig. 3 (bottom row).
The variance of both decoders was greatest at orientations close to the adapting stimulus compared
to orthogonal test orientations, where the response reduction is largest, Fig. 2C.

4 Discussion

The ring model with STP replicated perceptual tilt aftereffects and links them to changes in the ori-
entation tuning curves of neurons. Adaptation of firing rates was driven by synaptic depression at
both the excitatory and inhibitory synapses. Synaptic facilitation of inhibitory connections affected
the tilt direction of the aftereffects. The bias and variance of two population decoders were com-
puted with and without facilitory inhibition. These two conditions yielded different TAEs. Without
inhibitory facilitation, the two decoders predicted a strong repulsive TAE. However, repulsive and
attractive shifts were predicted with inhibitory facilitation by both decoders. Psychophysical ex-
periments report repulsion close to the adapting stimulus and attraction far away from it [18, 5, 8],
consistent with the predictions of facilitory inhibition. The variance of both decoders was highest
for orientations close to the adapting stimulus, independently of the facilitation. This prediction is
consistent with better performance at test angles orthogonal to the adapting stimulus compared to
the performance for test orientations close to the adapter [19, 7].

6



winner take all

−12

−8

−4

0

4

8

12

control
−12

−8

−4

0

4

8

12

−90 −45 0 45 90

0

0.4

0.8

1.2

−90 −45 0 45 90
40

50

60

70

80

test orientation     (deg) test orientation     (deg) 

bi
as

 (
de

g)

 

va
ria

nc
e 

(d
eg

^2
)

population vectorA B

Figure 3: Effect of adaptation on decoders and the tilt aftereffect. For the A, population vector
(PV) and B, winner-take-all (WTA) decoders we computed the bias due to the adaption, which is a
measure of the tilt aftereffect (TAE). The bias (top row) is similar for the two decoders: after adapta-
tion there was a strong repulsive TAE for the case of nonfacilitory inhibition. For facilitory inhibition
it is possible to have both a small repulsive TAE for test orientations close to the adapting stimu-
lus and an attractive shift for orientations farther from the adapting stimulus. The variance (bottom
row) gives an idea of the efficiency of the decoder. If after many trials with the same conditions the
estimation does not differ among all repetitions, the decoder is efficient. Both decoders were qual-
itatively similar. For orientations close to the adapting stimulus, the two decoders performed less
efficiently compared to the testing of orthogonal orientations to the adapting stimulus. Although
the average bias was comparable for the two decoders, the WTA variance was much higher, which
means it was much less efficient than the PV.
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